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p r e fa c e

Economic theory, I argue, has focused almost entirely on how economic 
agents compete with each other, in market economies and in games. 

But competition does not exhaust our economic behavior: humans cooper-
ate in many economic situations, and they often achieve better results than 
they could through competition. Although game theorists have attempted 
to incorporate cooperative behavior into their standard template (namely, 
by explaining cooperation as the Nash equilibrium of a multistage game), I 
believe that this explanation of cooperation is unconvincing. more recently, 
behavioral economists have rebelled against such an explanation and have 
argued that explaining cooperation requires dropping the standard assump-
tion of economic theory, that economic agents are self-interested or self-
regarding. The behavioral economists’ explanation of cooperation, while 
replacing self-regarding preferences with ones that include as arguments 
the welfare of others or a conception of fairness, still relies upon the main 
tool of conventional game theory: Nash equilibrium.

I do not believe that cooperation is usually achieved in a way that is prop-
erly modeled as the Nash equilibrium of a game—with either conventional 
self-regarding preferences or nonstandard preferences that incorporate 
more exotic arguments. In Nash equilibrium, each player treats all other 
players’ actions parametrically, that is, as part of his or her environment. 
How do we define Nash optimization? Taking the actions of the others as 
fixed, what is the best action for me? I think a model of cooperation should 
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show explicitly how each individual in the group contemplates how others 
will coordinate with him or her—others should be viewed, not as part of the 
environment, but as part of the action. This means that optimization must 
be done in a non-Nash way.

defining an equilibrium of a game requires two kinds of data: the prefer-
ences of the players and the manner in which they optimize. The disagree-
ment between neoclassical and behavioral economists, up until now, has 
focused only upon the first component of this duo, but agrees upon the 
manner of optimizing. I believe that we can more intuitively explain co-
operation by assuming that players optimize in a different way from when 
they play competitively. In simple games (symmetric ones), a player in a 
cooperative situation asks himself, “What is the strategy I would like all of 
us to play?” I call this Kantian optimization, because it seems like a natural 
interpretation of Immanuel Kant’s categorical or hypothetical imperative: 
take those actions that you would will be universalized.

Those of us schooled in game theory will, at least initially, say that such 
optimizing behavior is irrational. We have come to understand Nash op-
timization as the uniquely rational way to optimize in a game. To explain 
cooperation, neoclassical economists must construct rather complicated 
games (with many stages). my approach is much simpler; it is achieved not 
with the architecture of multistage games but by reconceptualizing optimi-
zation as itself a cooperative venture.

The simplest maxim that summarizes the motivation for Kantian opti-
mization, at least in situations of symmetry, is “We must, indeed, all hang 
together, or most assuredly we shall all hang separately.” This wonderful 
aphorism depends, of course, on the double meaning in English of the verb 
“to hang.” I do not know if other languages have as pithy a summary of the 
motivation for cooperation. Benjamin Franklin was apparently the first to 
utter this phrase, when trying to stimulate solidarity among those men who 
were debating whether to sign the declaration of Independence, and it later 
became a staple of the labor movement in the United States. It is difficult 
to call a kind of behavior irrational if, somehow, people are convinced to 
behave in the prescribed manner and the results are better for them than if 
they did not.
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ten comments or extended discussion upon versions of this work: Wolfgang 
Buckholtz, Bart Campéau, Luis Corchon, Giacomo Corneo, Steven dar-
wall, Herbert Gintis, Philip Kitcher, david Levine, Humberto Llavador, 
François maniquet, Andreu mas-Colell, Juan moreno-Ternero, Joseph Os-
troy, Roman Pancs, Stefan Penczynski, Ariel Rubinstein, Larry Samuelson, 
Carsten Schröder, Joaquim Silvestre, Joel Sobel, Stephen Stearns, Roberto 
veneziani, Alain Trannoy, Burak Ünveren, Karine van der Straeten, and 
Ebonya Washington. I am deeply grateful to all of them. Naturally, I remain 
responsible for the errors—important conceptual ones and more straight-
forward mathematical ones, both kinds of which doubtless remain.
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o n e

Introduction

Cooperation, Altruism, and Economic Theory

1.1 A Cooperative Species

It is frequently said that Homo sapiens is a cooperative species. We are 
clearly not unique in this regard: ants and bees cooperate, and perhaps 
other mammalian species do, too. But the evolutionary psychologist and 
linguist Michael Tomasello (2014a, 2014b, 2016) argues that the only coop-
erative species among the five great apes (chimpanzees, bonobos, gorillas, 
orangutans, and humans) is our own.1 Tomasello believes that the tendency 
to cooperate with other humans is inborn. He offers a number of examples 
of our features and behavior that are unique to humans among the five great 
apes. Here are three: (1) among the great apes, humans are the only be-
ings with sclera (the whites of the eyes); (2) only humans point and mime; 
(3) only humans have language. Each of these features, Tomasello argues, 
evolved for cooperation. Sclera, for example, are useful because they enable 
you to see what I am looking at. If I am looking at an animal that would 
make a good meal, and if you and I cooperate in hunting, it is useful for 
me that you can see the prey that I see, because then we can catch and 
consume it together. Were you and I only competitors, it would not be use-
ful for me that you see the object of my gaze, because we would then fight 
over who gets the animal. Thus, one would expect the mutation of sclera to 
be selected in a cooperative species but not to be selected in a competitive 
one.2 Miming and pointing also probably emerged in hunting and were 
useful for members of a species who cooperated in hunting. Chimpanzees, 
which do not cooperate in hunting, do not mime or point3—either with 
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other chimpanzees or with humans. Miming and pointing are the prede-
cessors of language. Complex organs like the eye and complex systems like 
language must have evolved incrementally as the result of selection from 
among many random mutations. Tomasello argues that language would not 
be useful, and therefore would not evolve, in a species that did not already 
have cooperative behavior. If you and I are simply competitors, why should 
you believe anything I tell you? I am only out for myself, and must be try-
ing to mislead you, because cooperation is not something in our toolkit. So 
language, should primitive forms of it emerge in a noncooperative species, 
would die out for lack of utility.

Tomasello has conducted experiments in which he compares human 
infants to chimpanzees, who are set with a task in which cooperation would 
be useful. The general outcome of these experiments is that human in-
fants (ten months or older) cooperate immediately, whereas chimpanzees 
do not. Often, the cooperative project that Tomasello designs in the lab 
involves working together to acquire food, which then must be shared. If 
chimpanzees initially cooperate in acquiring the food, they find that they 
cannot share it peacefully but fight over it, and hence they do not cooperate 
the next time the project is proposed to them, because they know that the 
end would be a fight, which is not worth the value of the food that might be 
acquired. Human infants, however, succeed immediately and repeatedly in 
cooperating in both acquiring and eating the food.4

There are, of course, a myriad of examples of human cooperation, in-
volving projects infinitely more complex than hunting or acquiring a piece 
of food that is difficult to get. Humans have evolved complex societies, in 
which people live together, cheek by jowl, in huge cities, and do so rela-
tively peacefully. We organize complex projects, including states and taxa-
tion, the provision of public goods, large firms and other social organiza-
tions, and intricate social conventions, which are sustained only because 
most of those who participate do so cooperatively—that is, they participate, 
not because of the fear of penalties should they fail to do so, but because 
they understand the value of contributing to the cooperative venture. (This 
may seem vague at this point but will be made more precise below.) We 
often explain these human achievements by the high intelligence that we 



S
N
L
3

introduction

3

uniquely possess. But intelligence does not suffice as an explanation. The 
tendency to cooperate, whether inborn or learned, is surely necessary. If we 
are persuaded by Tomasello, then that tendency is inborn and was neces-
sary for the development of the huge and complex cooperative projects that 
humans undertake.

Of course, Tomasello’s claim (that humans are extremely cooperative 
great apes) does not fall if cooperation is learned through culture rather 
than transmitted genetically. In the former case, cooperation would be a 
meme, passed down in all successful human societies.

It is even possible that the large brains that differentiate humans from 
the other great apes evolved as a result of the cooperative tendency. Why? 
Because large brains are useful for complex projects—initially, complex 
projects that would further the fitness of the members of the species. From 
an evolutionary viewpoint, it might not be efficient to spend the resources to 
produce a large brain if complex projects were not necessary. Such projects 
would not be feasible without cooperation: complexity here, by definition, 
means that the projects are too difficult to be carried out by an individual 
and require coordinated effort. If humans did not already have a tendency 
to cooperate, then a mutation that enlarged the brain would not perhaps be 
selected, because it would not be useful. So not only language, but intel-
ligence generally, may be the evolutionary product of a prior selection of 
the cooperative “gene.” See Dunbar (2009) for further elaboration of this 
hypothesis.

Readers, especially economists, may object: cooperation, they might say, 
is fairly rare among humans, who are mainly characterized by competi-
tive behavior. Indeed, what seems to be the case is that cooperation evolves 
in small groups—families, tribes—but that these groups are often at war 
with one another. Stone Age New Guinea, which was observable up un-
til around the middle of the twentieth century, was home to thousands of 
tribes (with thousands of languages) that fought one another; within each 
tribe, however, cooperation flourished. (One very important aspect of intra-
tribal cooperation among young men was participating in warfare against 
other tribes. See Bowles and Gintis [2011], who attribute the participation 
of young men in warring parties against other tribes to their altruism toward 
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cotribals. I am skeptical that altruism rather than cooperation is the key 
here.) Indeed, up until the present, human society has been characterized 
by increasingly complex states, within which cooperative behavior is perva-
sive but between which there is lack of trust. Sharp competition between 
states (war) has been pervasive. So the human tendency to cooperate is, so 
it appears, not unlimited, but generally, as history has progressed, the so-
cial units within which cooperation is practiced have become increasingly 
large, now sometimes encompassing more than a billion humans.

1.2 Cooperation versus Altruism

For members of a group to cooperate means that they “work together, act in 
conjunction with one another, for an end or purpose” (Oxford English Dic-
tionary). There is no supposition that the individuals care about each other. 
Cooperation may be the only means of satisfying one’s own self-interested 
preferences. You and I build a house together so that we may each live in it. 
We cooperate, not because of an interest in the other’s welfare, but because 
cooperative production is the only way of providing any domicile. The same 
thing is true of the early hunters I described above: without cooperation, 
neither of us could capture that deer, which, when caught by our joint 
effort, will feed both of us. In particular, I cooperate with you because the 
deer will feed me. It is not necessary that I ascribe any value to the fact that 
it will feed you, too.

Solidarity is defined as “a union of purpose, sympathies, or interests 
among the members of a group” (American Heritage Dictionary). The 
writer H. G. Wells is quoted there as saying, “A downtrodden class . . . will 
never be able to make an effective protest until it achieves solidarity.” Soli-
darity, so construed, is not the cooperative action that the individuals take 
but rather a characterization of their objective situation: namely, that all are 
in the same boat and understand that fact. I take “a union of interests” to 
mean that we are all in the same situation and have common preferences. 
It does not mean we are altruistic toward each other. Granted, one might 
interpret “a union of . . . sympathies” to mean altruism, but I focus rather on 
“a union of purpose or interests.” The statement by Wells clearly indicates 
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the distinction between the joint action and the state of solidarity, because 
the action proceeds from the solidaristic state.

Of course, people may become increasingly sophisticated with respect to 
their ability to understand that they have a union of interests with other peo-
ple. Benjamin Franklin’s oft-quoted remark, “We must all hang together, or  
most assuredly we will each hang separately,” urges everyone to see that 
they do, indeed, have similar interests to others and, hence, that it may be 
logical to act cooperatively. Notice that Franklin’s statement appeals, not to 
our altruism, but to our self-interest, and to the solidaristic state in which 
we find ourselves.

My claim is that the ability to cooperate for reasons of self-interest is 
less demanding than the prescription to care about others. I believe that it 
is easier to explain the many examples of human cooperation from an as-
sumption that people learn that cooperation can further their own interests 
than to explain those examples by altruism. For this reason, I separate the 
discussion of cooperation among self-interested individuals from coopera-
tion among altruistic ones (altruism will not be addressed until chapter 5).

Altruism and cooperation are frequently confounded in the literature. I 
do not mean the example I gave from Samuel Bowles and Herbert Gintis, 
who in their book A Cooperative Species: Human Reciprocity and Its Evolu-
tion explicitly view altruism as the characteristic that induces young men to 
undertake dangerous combat for their community. If they are right, this is 
a case in which altruism engenders cooperative action. I mean that writers 
often seem not to see a distinction between altruism and cooperation. The 
key point is that cooperation of an extensive kind can be undertaken be-
cause it is in the interest of each, not because each cares about others. I am 
skeptical that humans can, on a mass scale, have deep concern for others 
whom they have not even met, and so to base grand humanitarian projects 
on such a psychological propensity is risky. I do, however, believe that hu-
mans quite generally have common interests and that it is natural to pursue 
these cooperatively. (One can hardly avoid thinking of the control of global 
greenhouse gas emissions as a leading such issue at present.) It seems that 
the safer general strategy is to rely on the underlying motive of self-interest, 
active in cooperation, rather than on love for others, active in altruism.
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The necessary conditions for cooperation are solidarity (in the sense of 
our all being in the same boat) and trust—trust that if I take the coopera-
tive action, so will enough others to advance our common interest. Soli-
darity comes in different degrees—recall the famous statement by Martin 
Niemöller, who because of his opposition to Hitler spent the last seven years 
of Nazi rule in a concentration camp: “First they came for the Socialists, 
and I did not speak out—Because I was not a Socialist. . . . Then they came 
for the Jews, and I did not speak out—Because I was not a Jew. Then they 
came for me—and there was no one left to speak for me.” The listener is be-
ing urged, here, to see that “we are all in the same boat,” even if superficial 
differences among us may frustrate that understanding. Trust usually must 
be built by past experience of cooperation with the individuals concerned. 
Trust may be distributed in a somewhat continuous way in a population: 
some people are unconditional cooperators, who will cooperate regardless 
of the participation of others; some will cooperate when a certain threshold 
is reached (say, 20 percent of others are cooperating); and some will never 
cooperate, even if all else are doing so. The common name we have for 
persons of the first kind is saint.

1.3 Cooperation and Economic Theory

Economic theory has focused not on our cooperative tendencies but on 
our competitive ones. Indeed, the two great theoretical contributions of 
microeconomics are both models of competition: the theory of competi-
tive or Walrasian equilibrium, and game theory, with its associated stability 
concept, Nash equilibrium. It is clear that cooperation does not exist in the 
everyday meaning of the word in these theories. There is indeed nothing 
that can be thought of as social action. The kind of reasoning, or optimiza-
tion, that individuals engage in in these theories is autarkic: other humans’ 
actions are treated as parameters of the individual’s problem, not as part of 
the action.

In general equilibrium theory, at least its most popular Walrasian ver-
sion, individuals do not even observe what other people are doing: they 
simply observe the price vector and optimize against prices.5 Prices sum-
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marize all the relevant information about what others are doing, and so it 
is superfluous for the individual to have specific information about others’ 
actions. This indeed is usually championed as one of the beauties of the 
model—its ability to decentralize economic activity in the sense that each 
person need only know information about itself (preferences for humans, 
technologies for firms) and prices for Pareto efficiency to be achieved. To 
be precise, the “achievement” of efficiency is an incomplete story because 
it lacks dynamics: we know only that if an equilibrium is reached, it will be 
Pareto efficient, and the theory of dynamics remains incomplete. (The first 
theorem of welfare economics, which states that a competitive equilibrium 
is Pareto efficient, holds only under stringent and unrealistic conditions: 
economic problems that require cooperation, such as the financing of pub-
lic goods and the regulation of public bads, are stipulated not to exist.) In 
the Nash equilibrium of a game each player treats his competitors as inert: 
he imagines a counterfactual in which he alone changes his strategy while 
the others hold theirs fixed. A Nash equilibrium is a strategy profile such 
that each person’s strategy is optimal (for himself) given the inertness of oth-
ers’ strategies. One can say that a Nash optimizer treats others as parameters 
of the environment rather than as persons such as herself.

There is no doubt that general equilibrium and game theory are beauti-
ful ideas; they are the culmination of what is probably the deepest thinking 
in the social sciences over the past several centuries. But they are not de-
signed to deal with that aspect of behavior that is so distinctive of humans 
(among the great apes): our ability to cooperate with one another.

Economic theory, though it does not entirely ignore cooperation, at-
tempts to fit it into the procrustean bed of the competitive model. Until 
behavioral economics came along, the main way of explaining coopera-
tion—which here can be defined as the overcoming of the Pareto inefficient 
Nash equilibria that standardly occur in games—was to view cooperation 
as a Nash equilibrium of a complex game with many stages. (See Kandori 
1992.) Think of a game such as the prisoner’s dilemma, in which there is a 
cooperative strategy and a noncooperative one. These strategies inherit their 
names from the fact that if both players play the cooperative strategy, each 
does better than if both play the noncooperative one. In this well-known 
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game, the unique Nash equilibrium is for both players to play the noncoop-
erative strategy. The complex stage game in which the one-shot prisoner’s 
dilemma can be embedded stipulates that if a player fails to cooperate at 
stage t, then she is punished at stage t + 1 by another player. However, 
punishment, being costly for the enforcer, is carried out only against nonco-
operators in stage t if there is a stage t + 2 in which those enforcers who fail 
to punish are themselves punished. The game must have an infinite num-
ber of stages, or at least an unknown number of stages, for this approach to 
support a cooperative equilibrium. For if it were known that the game had 
only three stages, say, then enforcers in the third stage would not punish 
the lazy enforcers who failed to punish in the second stage, because nobody 
would be around to punish them for failing to do so (there being no fourth 
stage). So those who are charged with punishing in the second stage will not 
do so (punishing being costly), and thus a player can play the noncoopera-
tive strategy in the first stage without fear of punishment. Therefore, with 
a known, finite number of stages, the good equilibrium (with cooperation) 
unravels.

But is this really the explanation of why people cooperate? The influen-
tial economist Mancur Olson (1965) argued that it is. Workers join strikes 
only because they will be punished by other workers if they do not; they join 
unions not in recognition of their solidaristic situation, but because they are 
offered side payments to do so.

Communities that suffer from the so-called free-rider problem in the pro-
vision of public goods often do adopt punishment strategies to induce mem-
bers to cooperate. Fishers must often control the total amount of fishing to 
preserve the fishery. Absent cooperation, common-pool resources such as 
fisheries are overexploited. Maine lobstermen apparently had a sequence of 
increasing punishments for those who deviated from the prescribed rules. 
If a lobsterman put out too many nets, the first step was for others to place 
a warning note on the buoys of the offending nets. If that didn’t work, a 
committee visited him. If that failed, his nets were destroyed. Now consider 
the optimization problem of those who were appointed to do these acts of 
warning and punishment. If they failed in their duty, there must be another 
group who was charged with punishing them—or perhaps this would be 
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accomplished simply by social ostracism. But is it credible that the whole 
system was maintained even though everyone was in fact optimizing in the 
autarkic Nash way, carrying out his duty to punish only because of a fear 
of punishment should he shirk in this duty? I am skeptical. It is perhaps 
more likely that there were many who were committed to implementing 
the cooperative solution, many who did not require the threat of punish-
ment to take the cooperative action, at any stage of the game. The complex 
equilibrium in which cooperation is maintained by an elaborate chain of 
punishments is, I think, too fragile to explain the real thing. The explana-
tion is Ptolemaic, an effort to fit an observed phenomenon into a theory that 
cannot explain it in a simple way.

Social and political theorist Jon Elster (2017) introduces useful distinc-
tions. A social norm is a behavior that is enforced by punishment of those who 
deviate from it; those who observe the deviation and fail to punish the devia-
tor are themselves punished by others who observe this. A social norm is thus 
a Nash equilibrium of a game with stages, in which those who fail to cooper-
ate are punished, and so on and on. A person obeys a social norm because 
he is afraid of being seen if he fails to, and hence punished by the observer. 
In contrast, a quasi-moral norm is one that is motivated by wanting to do the 
right thing. But the “right thing” is defined in large part by what others do. 
If I observe that most others are recycling their trash, and therefore I recycle, 
I am behaving according to a quasi-moral norm. In this case, I cooperate 
not because I am afraid of being seen should I fail to; rather, I cooperate be-
cause I see others taking the cooperative action. A moral norm is, in contrast, 
unconditional. I take the cooperative action regardless of what others are do-
ing. The Kant ian categorical and hypothetical imperatives are moral norms. 
The behavior of the lobstermen described above could be a social norm or 
a quasi-moral norm. It is unlikely that it constitutes a moral norm. Because I 
believe that trust is a necessary condition, I view cooperation as a quasi-moral 
norm, for trust is established by observing that others are taking the coopera-
tive action or have taken similarly cooperative actions in the past.

The second place where we find cooperation addressed in neoclassical 
economic theory is in the theory of cooperative games. A cooperative game 
with a player set N is a function v mapping the subsets of N into the real 
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numbers. Each subset S N∈2  is a coalition of players, and the number v(S) 
is interpreted as the total utility (let us say) that S’s members can achieve by 
cooperation among themselves. A solution to a cooperative game is way of 
assigning utility to the members of N that satisfies the constraint that total 
utility cannot exceed v(N). For instance, the core is the set of “imputations” 
or utility allocations such that no coalition can do better for itself by internal 
cooperation. If (x1,…,xn) is a utility imputation in the core, then the follow-
ing inequality must hold:

 ( )( ( ) )∀ ∈ ≤
∈
∑S v S xN i

i S

2 . (1.1)

Although cooperation is invoked to explain what coalitions can achieve 
on their own, the core itself is a competitive notion: the values v(S) are 
backstops that determine the nature of competition among the player set 
as a whole. It is therefore somewhat of a misnomer to call this approach 
“cooperative.” Indeed, Andreu Mas-Colell (1987, 659) writes: “The typi-
cal starting point [of cooperative game theory] is the hypothesis that, in 
principle, any subgroup of economic agents (or perhaps some distinguished 
subgroups) has a clear picture of the possibilities of joint action and that its 
members can communicate freely before the formal play starts. Obviously, 
what is left out of cooperative theory is very substantial.” Indeed!

Behavioral economists have challenged this unlikely rationalization of 
cooperative behavior as a Nash equilibrium of a complex game with pun-
ishments by altering the standard assumption of self-interested preferences. 
There are many versions, but they share in common the move of putting 
new and “exotic” arguments into preferences—arguments such as a con-
cern with fairness (Fehr and Schmidt 1999 and Rabin 2003) or of giving 
gifts to one’s opponent (Akerlof 1982) or of seeking a warm glow (Andreoni 
1990). Once preferences have been so altered, then the cooperative out-
come can be achieved as a Nash equilibrium of the new game. Punish-
ments may indeed be inflicted by such players against others who fail to 
cooperate, but it is no longer necessarily costly for the enforcer to punish, 
because his sense of fairness has been offended or a social norm has been 
broken that he values. Or he may even get a warm glow from punishing the 
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deviator! I will discuss these approaches more below. My immediate reac-
tion to them is that they are too easy—in the sense of being nonfalsifiable. 
The invention of the concept of a preference order is extremely important, 
but one must exercise a certain discipline in using it. Just as econometri-
cians are not free to mine the data, so theorists should not allow everything 
(“the kitchen sink”) to be an argument of preferences. It is, of course, a 
personal judgment to draw the line as I have suggested it be drawn.

If the undisciplined use of preferences were my only critique of behav-
ioral economics, it might be minimized. A more formidable critique, I 
think, is that the trick of modifying preferences only works—in the sense 
of producing the “good” or cooperative Nash equilibrium—when the prob-
lem is pretty simple. (“Simple” usually means that a player has only a few 
strategies and that the “cooperative” strategy is obvious to everyone. This is 
true in most 2 × 2 matrix games. In laboratory games involving the volun-
tary contribution to a public good, and in ultimatum and dictator games, 
there are many strategies, but it is nevertheless clear what the cooperative 
action is.) If we consider, however, the general problem of the tragedy of the 
commons in common-pool resource games, the cooperative strategy pro-
file—in which each player plays her part of a Pareto-efficient solution—is 
not obvious. Either some kind of decentralization of cooperation is needed 
or cooperation must be organized by a central authority.

Just as the Walrasian equilibrium of a market economy is not obvious to 
anyone and requires decentralization, so does cooperation with any degree 
of complexity. Although we have many examples of cooperation that are 
organized by a central authority, it is surely the case that the vast majority 
of cases of cooperation in human experience are not centrally organized. 
An ordinary person encounters hundreds of situations a year in which co-
operation would be profitable but is not centrally organized. How, then, do 
people manage to cooperate in these cases?

I do not believe that the strategy of behavioral economics supplies 
micro foundations for cooperation of a general kind. And if cooperation is a 
major part of what makes us human, we should be looking for its general 
microfoundations.
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1.4 Simple Kant ian Optimization

In this book I will offer a partial solution to the problem of specifying micro-
foundations for cooperation, which I call Kant ian optimization, with its 
concomitant concept of Kant ian equilibrium. The new move is, instead of 
altering preferences from classical, self-interested ones, to alter how people 
optimize. In the simplest case, consider a symmetric game. A two-person 
game is symmetric if the payoff matrix is symmetric, as in the prisoner’s 
dilemma of table 1.1.

Table 1.1 The payoff matrix of a prisoner’s dilemma game; the 
first number in parentheses is the payoff to the row player, and 

the second number is the payoff to the column player

A B

A (1,1) (−1,2)

B (2,−1) (0,0)

A symmetric game is one in which players are identically situated: they 
are all in the same boat. In the game of table 1.1, a Nash optimizer asks him-
self, “Given the strategy chosen by my opponent, what is the best strategy 
for me?” The answer, regardless of the opponent’s choice, is that I should 
play B. B is a “dominant strategy,” in the language of game theory. But a 
Kant ian optimizer—so I propose—asks, “What is the strategy I would like 
both of us to play?” Clearly the answer is A, because I do better if we both 
play A than if we both play B. It is not relevant to me that you also do better 
when we both play A—altruism is not my motivation. It is, however, impor-
tant that I understand the symmetry of the game and, hence, know that the 
answer to the proposed question is the same for both of us.

The symmetry of the situation naturally suggests that we ask the Kant-
ian question. Tomasello argues that the ability to cooperate is founded in 
our ability to form “joint intentionality.” My interpretation of this concept 
is that we each think, “What would I like each of us to do?” and if we trust 
each other, we understand that each of us is thinking in this way and will 
behave in the way the answer instructs. I will elaborate on this in chapter 2.
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Definition 1.1 In a symmetric game, the strategy that each would prefer 
all to play is a simple Kant ian equilibrium (SKE).6

I invoke Immanuel Kant here because of his categorical and hypotheti-
cal imperatives, which state that one should take those actions one would 
like to see universalized.7 I understand that it would be more precise to call 
this “quasi-moral optimization,” because Kant’s imperatives are uncondi-
tional, whereas mine is not. I opt, however, for the more imprecise “Kant-
ian” nomenclature because there is a history of using it in economics, as I 
will review in section 2.7, and because it is aptly described by Kant’s phrase, 
“Take those actions you would will be universalized,” even if Kant meant 
this in an unconditional way.

The concept of Kant ian equilibrium will later be generalized beyond 
the case of symmetric games, but it is useful to consider these games first, 
because they are the simplest. Many laboratory experiments in economics 
involve symmetric games, and it is in symmetric games that Kant ian optimi-
zation takes its simplest and most compelling form.

It is important to note that the Kant ian optimizer asks what common 
strategy (played by all) would be best for him: he is not altruistic, in thinking 
about the payoffs of others. To calculate the strategy he would like everyone 
to play, he need only know his own preferences. But to invoke joint inten-
tionality, he must also know that others are similarly situated—that is, that 
the game is symmetric. This implies that the common strategy that is best 
for him is also best for others, a fact that does not appeal to his perhaps non-
existent altruism but motivates his expectation that others will act in like 
manner. That expectation, however, must also be engendered by trust or an 
experience of past cooperation.

What I emphasize is that cooperation, in this view, is achieved, not by 
inserting a new argument into preferences, such as altruism or a warm glow, 
but by conceptualizing the optimizing process in a different way. These are 
diverse ways of modeling the problem—one involves altering preferences 
but keeping the Nash optimization protocol, and the other involves  keeping 
preferences classical but altering the optimization protocol. Despite the 
conceptual distinction, it may be difficult to test which model better ex-
plains the reality of cooperation, a problem to which we will return.
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A quite different question, to which I have no complete answer, is when, 
in a game, do players choose to invoke the Kant ian protocol and when the 
Nash protocol? Often, I believe, this depends on the degree of trust in the 
other players. Of course, trust is irrelevant for a Nash optimizer.

1.5 Some Examples

I conclude this chapter with several examples of what I believe to be Kant-
ian optimization in real life.

A. Recycling. In many cities, many or most people recycle their 
trash. There is no penalty for failing to do so. Often, others do 
not observe if one does not recycle. The cost of recycling may 
be nontrivial—certainly greater than the marginal benefit in 
terms of the public good of a clean environment that one’s 
participation engenders. James Andreoni’s (1990) view, that 
one cooperates in order to receive a “warm glow,” is an ex-
ample of explaining recycling by inserting an exotic argument 
into preferences. I think this puts the cart before the horse: 
one may indeed enjoy a warm glow, but that’s because one 
has done the right thing—that is, taken the action one would 
like all to take. The warm glow is an unintended by-product 
of the action, not its cause. Suppose that I help my child with 
her algebra homework: she masters the quadratic formula. I 
feel a warm glow. But seeking that glow was not my motiva-
tion: it was to teach her algebra, and the warm glow follows, 
unintendedly, as a consequence of success in that project. 
While recycling may be a quasi-moral norm, teaching my 
daughter algebra is probably due to altruism. In either case, I 
find the “warm glow” to be no explanation at all.

B. “Doing one’s bit” in Britain in World War II. This was a popu-
lar expression for something voluntary and extra that one did 
for the war effort. Is it best explained by seeking the respect 
or approval of others or by doing what one wished everyone 
to do? For some, this could be a social norm, punished, if 
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avoided, by ostracism. For others, it was a quasi-moral norm, 
done because it was the right thing to do, as evidenced by 
what others were doing.

C. Soldiers protecting comrades in battle. This can be a Kant ian 
equilibrium but also could be induced by altruism. One be-
comes close to others in one’s unit. In this case, the Kant ian 
equilibrium is also an instance of the golden rule—“Do unto 
others what you would have them do unto you.” Golden-rule 
optimization is a special case of simple Kant ian equilibrium.

D. Voting. The voting paradox is not one from the Kant ian 
viewpoint: I vote because I’d like everyone to vote, rather than 
not to vote, to contribute to the public good of democracy. A 
somewhat different form is that I vote because I would like 
everyone similarly situated to me (that is, sharing my politics) 
to vote.

E. Paying taxes. It has often been observed that the probability of 
being caught for tax evasion and the penalties assessed for do-
ing so are far too small to explain the relatively small degree 
of tax evasion in most advanced countries. In most countries 
(though not all), tax cheaters are not publicly identified, so 
shame (an exotic argument in preferences) is not an issue. 
Elster (2017), however, points out that in Norway, everyone’s 
tax payment is published on the internet, and this increases 
compliance. A caveat to the example is that the practice of 
withholding tax owed minimizes the possibility of evasion.

F. Tipping. A practice viewed by some as a paradox (Gambetta 
2015) is not one from the Kant ian viewpoint: here, there is 
an altruistic element, but it is not the interesting part of the 
behavior. The thought process is that I tip what I would like 
each to tip. I understand what I think it’s proper to tip by 
observing what the custom is—hence the quasi-moral nature 
of the behavior.

G. Charity. The Nash equilibrium is often not to donate, even if 
I value the public good produced. There is a Kant ian and a 
Rawlsian explanation of charity: the Kant ian gives what he’d 
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like all others (like him) to give. For the Rawlsian, charity is 
the random dictator game: behind the veil of ignorance, who 
will be the donor and who the recipient of charity? These 
two ways of looking at the problem generate different levels 
of charity (I may give much more in the so-called Rawlsian 
version). My conjecture is that the so-called Kant ian thought 
process is more prevalent.8

I have organized the book as follows. Part I, comprising chapters 2 through 
10, studies Kant ian optimization in games. The main result is that in many 
cases, Kant ian optimization solves the two major problems that afflict Nash 
equilibrium: the inefficiency of equilibrium in the presence of congestion 
externalities, known as the tragedy of the commons, and the inefficiency of 
equilibrium in the presence of public goods or positive externalities, known 
as the free-rider problem. In two important classes of games—those with 
positive and negative externalities—Kant ian equilibrium is Pareto efficient. 
Moreover, we will see that in such games, Nash equilibrium is always Pa-
reto inefficient. So Kant ian optimization “solves” what must appear as the 
two greatest failures of Nash optimization, from the viewpoint of human 
welfare.

In Part II, chapters 11 through 14, I apply Kant ian optimization to mar-
ket economies: that is, I embed cooperation in general equilibrium models. 
These four chapters present six such examples, which include showing how 
the problem of controlling global carbon emissions can be decentralized by 
using a cap-and-trade regime, as a “unanimity equilibrium”; how Kant ian 
optimization in the labor-supply decision by workers in a “market-socialist” 
economy produces Pareto-efficient equilibria with any desired degree of 
income redistribution, which is to say that the equity-efficiency trade-off 
dissolves; how public goods can be produced efficiently in a market econ-
omy; and how an economy consisting of worker-owned firms can achieve 
efficient equilibria, again with many degrees of freedom in the distribu-
tion of income, using Kant ian optimization. Chapter 15 offers some final 
reflections.
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Simple Kant ian Equilibrium

2.1 To Cooperate or Not?

Consider the prisoner’s dilemma of table 1.1. I propose that there are two 
ways for a self-interested player to decide what to do when playing this game.

Method One. A player thinks: no matter which strategy the other player 
chooses, my payoff is greater if I play B. Therefore, I should play B.

Method Two. Assume that it is common knowledge that the payoff matrix 
is symmetric and that my opponent and I have equal capacities and reason-
ing power. Hence, due to the symmetry of the game, I assume that whatever 
strategy I decide upon will also be decided upon by my opponent. It follows 
that I must only consider strategy profiles (x,x) as ones that might occur, 
where x A B∈{ , }. I therefore should choose the strategy x that maximizes my 
payoff, if (x,x) is played by my opponent and me. That is strategy A. My op-
ponent will choose the same action, because he will reason this way as well, 
and of this I am confident, because of the common-knowledge assumption 
and our equal reasoning powers.

Obviously, Method One is Nash optimization and Method Two is Kant-
ian optimization: the first is aptly called noncooperative, the second coop-
erative. Method One engenders a Nash equilibrium (NE), and Method 
Two engenders a simple Kant ian equilibrium (SKE). The second method 
involves more assumptions about the environment: to wit, it is common 
knowledge that the players reason identically and the game is symmetric. 
Method One is particularly simple for the prisoner’s dilemma, because B is 
a dominant strategy.

Various philosophers have written about what is called joint intentional-
ity: this group includes Margaret Gilbert (1990), Michael Bratman (1992), 
Stephen Darwall (2009), Philip Kitcher (2011), and the  evolutionary 
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 psychologist Michael Tomasello (2016). They have somewhat different 
definitions of the concept; none seems exactly like the cooperative protocol 
in Method Two, but I think the common thread of this literature shows that 
many believe that a cooperative protocol exists and that it differs from the 
Nash protocol. None of these authors explains cooperation, when it occurs, 
as a Nash equilibrium of a game with many stages, involving punishment of 
those who deviate from the cooperative strategy, which is the most common 
way for (nonbehavioral) economists to explain cooperation.

One often thinks of trust as key in cooperative situations: trust is neces-
sary for cooperation because the strategy profile (A,A) is not a Nash equilib-
rium (that is, one player could defect against the other and gain personally). 
A Nash theorist says that (A,A) is unstable. I think of trust as induced by the 
assumptions of common knowledge and common capacity. We know that, 
in reality, racial, ethnic, and linguistic heterogeneity tend to weaken trust: 
this is because these kinds of heterogeneity weaken the plausibility of the 
common knowledge and common capacity assumptions. In particular, it is 
not because homogeneity induces altruism that like people cooperate but 
because homogeneity makes the common-knowledge assumption credible. 
Conversely, if you and I are in different tribes, I am not confident that you 
will reason as I do.

Trust is conventionally defined as the belief that my opponent will play 
cooperatively. I am suggesting an explanation of trust. If it is common 
knowledge that the game is symmetric and that all players are equally ca-
pable and think in the same way, then (my argument says) they will limit 
their domain of admissible strategy profiles to ones in which all players take 
the same action, and (to continue my argument) that must therefore be the 
action that is best for each, about which unanimity prevails (assuming there 
is a unique such action). Thus, the microfoundation of trust, and hence 
cooperation, is common knowledge of the game’s symmetry and equality of 
capability of the players.

Tomasello (2016) speaks of common ground in early societies—the com-
mon experiences and expectations and knowledge that members of the 
group have. It is common ground that gives rise to the common knowledge 
assumption. Common ground, for Tomasello, includes knowledge of “how 
we do things,” which we could formalize as, among other things, the strate-
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gies we play in gamelike situations with each other. Tomasello does not 
state any protocol as abstract as Method Two.

What I have described as Method Two of optimizing, some would pro-
test, is too thin a conception of cooperation. In particular, Darwall (2013) 
emphasizes what he calls second-personal protest. If I play strategy A and 
you play B in the prisoner’s dilemma, I will protest: you have not done what 
is the “right thing” in our society, which is to play A. Darwall’s discussion ap-
plies to projects that the two of us have agreed to undertake, and attendant 
with that is an agreement for us each to do the right thing, which Tomasello 
would say is part of the common ground assumption. This is not necessarily 
the situation I posed, of a prisoner’s dilemma, which may be a situation we 
find ourselves in together, willy-nilly, but not a project with a goal that we 
have formulated. Certainly, forming a joint project may entail an obligation 
that we each carry out our expected roles, and each may protest against 
a partner who fails to do the right thing; nor is it surprising that a partner 
could be deterred from failing in his obligation for fear of the protest that 
would follow.

However, Darwall’s justification of second-personal protest could apply 
as well to prisoner’s dilemma situations that are not joint projects but situ-
ations we find ourselves in, willy-nilly. For if we are from the same cultural 
group, then there may well be an expectation that when members of our 
group are thrown together in a prisoner’s dilemma, we each play strategy A. 
The obligation to do so comes, not from a prior agreement between us spe-
cifically to carry out a project, but from the agreement among our cultural 
group to play strategy A when such situations come up. This kind of agree-
ment is a social norm and, I do not think, at this stage is modeled as the 
outcome of individual optimizing.

In chapter 1, I discussed how Jon Elster (2017) distinguishes among so-
cial norms, moral norms, and quasi-moral norms. Elster (1989a, 1989b, 
2017) has also written about magical thinking: I take an action because I 
believe that it will cause people similar to me to take a similar action. Surely 
magical thinking, if present, can induce Kant ian optimization. I take the 
action that I would like all others to take, believing that my taking the ac-
tion will induce them to do so; and therefore magical thinking can induce 
Kant ian optimization in the absence of an ethical commitment to behave 
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morally. The thought process I describe as Method Two above is not magi-
cal thinking, although it may have the same consequence.

Darwall and Tomasello may be correct that cooperation (and morality) 
evolved as social norms, instructing people how to behave in a variety of 
situations. But unless there is a general rule of behavior, then cooperation 
must require a catalog of what the right behaviors are in every possible situ-
ation one might encounter with others. What I propose is that the gen-
eral rule that always finds the cooperative solution in symmetric games is 
“Choose the strategy I would like all to choose.” This defines the “right thing 
to do.” Once a person discovers this rule inductively, then looking up the 
right social (or moral) norm for the situation at hand in the culture’s catalog 
can be replaced with optimization. Moreover, the rule can be applied to 
cases that are omitted from the catalog.

In proposing Method Two, I am not proposing to describe how coop-
eration evolved historically among humans. Cooperation may well have 
come about in the manner Tomasello describes, from a catalog instructing 
members of a group how they are to behave in a variety of situations, where 
deviations from that behavior would have been punished by others. My 
claim is that there is an underlying logic to the rules of behavior and, more-
over, that many humans must have learned to understand it. Indeed, every 
religion has a general rule along the lines of “Do unto others as you would 
have them do unto you,” a special case of Kant ian optimization. People who 
learned to understand the general rule (Method Two) had no further need 
of the cultural catalog of behavior. The advent of morality may be described 
as learning the general rule, no longer having to rely on the catalog.

As an ironic comment on the plausibility of simple Kant ian equilibrium, 
let me remind the reader of a scene in the movie A Beautiful Mind, the 
biopic about the mathematician John Nash. In the film, Nash proposes 
to his two buddies how the three of them should approach four women 
(three brunettes and a blonde) who have entered a bar: purportedly, he is 
describing a Nash equilibrium of the implicit game among the four men.1 
His proposal, that each man approach one of the brunettes, however, is not 
a Nash equilibrium but a simple Kant ian equilibrium (where the strategies 
are “approach a brunette” and “approach the blonde”). If two of the three 
men approach a brunette, the third should deviate to the blonde, according 
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to Nash optimization, given the preferences of the men, who are assumed 
to prefer blondes!

2.2 Monotonicity and Pareto Efficiency

We consider games in which all players have a common strategy space S 
of real numbers. A game with n players is defined by the payoff functions 
V Si n: → ℜ  for i = 1,…,n. Call this the game V.

Definition 2.1 A game V is (strictly) monotone increasing if, for each  
i, Vi is (strictly) increasing in the strategies of the other players j ≠ i. In like 
manner, a game is (strictly) monotone decreasing if, for each i, Vi is (strictly) 
decreasing in the strategies of the other players j ≠ i. A game is (strictly) 
monotone if it is either (strictly) monotone increasing or decreasing.

A game has a common diagonal if the payoff functions of all players co-
incide on the diagonal, {( , ,..., ) | }p p p S p Sn∈ ∈ —or, in ordinal language, 
if each player orders the elements on the main diagonal in the same way. 
This condition is weaker than saying that the game is symmetric. (For a 
two-person game, symmetry means that for all p q S, ∈ , V p q V q p1 2( , ) ( , )= .)  
It is immediate that if a game has a common diagonal, then it possesses a 
simple Kant ian equilibrium.

Proposition 2.1
a. If a game V possesses a common diagonal, then an SKE exists.
b. In a strictly monotone game, any SKE is Pareto efficient.
Proof of part b. Let the game be strictly monotone decreasing. Let 

(p*,p*,…,p*) be an SKE, and suppose that it is Pareto dominated by (p1,…, 
pn), so:

( )( ( ,..., ) ( ,..., ))* *∀ ≥i V p p V p pi n i1 ,

with at least one inequality strict. Obviously the {pi} are not all equal, for 
this would contradict the fact that p* is an SKE. Let p p

i

i= min . Let j be an 
index such that p pj = . Then:

V p p V p p V p pj j n j( ,..., ) ( ,..., ) ( ,..., )* *> ≥1 ,

where the first inequality follows by the strict monotone-decreasing property 
of the game, invoked for the jth player. But this inequality contradicts the 
premise that p* is an SKE: player j would prefer the vector (p,p,…,p).
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An analogous argument establishes the result if the game is strictly mono-
tone increasing. ■

The case of monotone decreasing games is the standard case in which 
the tragedy of the commons afflicts the Nash equilibrium. In this case, each 
person’s action imposes a negative externality on other players. The lake 
upon which we all fish becomes congested if we all fish too much, and 
everyone’s productivity declines. The case of monotone increasing games 
is one in which each person’s action increases the welfare of others: it is the 
classical case of a group’s contributions to a public good. This is the classical 
case in which the free-rider problem afflicts Nash equilibrium.

The tragedy of the commons and the free-rider problem are the two most 
noted pathologies of Nash reasoning in monotone games—pathologies in 
the sense that Nash reasoning produces a Pareto-inefficient outcome. Prop-
osition 2.1 establishes that in symmetric games of either type, Kant ian rea-
soning resolves them both.2

2.3 Two-Person Symmetric Games

As we noted above, a two-person symmetric game has a common diagonal, 
and so Proposition 2.1 applies.

The general prisoner’s dilemma is given by the payoff matrix of table 2.1. 
In the discrete version of the game, call “Defect” strategy 0 and “Cooper-
ate” strategy 1. Then the game is strictly monotone increasing, and so the 
simple Kant ian equilibrium, which is (Cooperate, Cooperate), is Pareto ef-
ficient (by Proposition 2.1). If we move to mixed strategies, where the strat-
egy space is S = [0,1] for each player, then the equilibrium depends on the 
payoff matrix, which is, in general form:3

Table 2.1 The prisoner’s dilemma game, with 0 < b < c

Cooperate Defect

Cooperate (0,0) (−c,1)

Defect (1,−c) (−b,−b)
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The payoff function of the row player is:

V p q p q c p q b p qPD( , ) ( ) ( ) ( )( )= − − + − − − −1 1 1 1 ,

where p(q) is the probability that the row (column) player plays Cooperate. 
The game is symmetric (thus, the payoff function of the column player is 
V q pPD( , ) ). Recall that in the mixed-strategy game, Pareto efficiency is de-
fined in terms of expected utility (that is, ex ante efficiency).

The prisoner’s dilemma game is strictly monotone increasing: just note 
that:

∂
∂

= + − + >V p q
q

pc p b
PD( , )

( )( )1 1 0 .

It follows immediately from Proposition 2.1 that the simple Kant ian equilib-
rium of the mixed-strategy prisoner’s dilemma (PD) game is Pareto efficient.

Proposition 2.2

a. The SKE of the PD game is Pareto efficient.
b. If 1 ≤ c ≤ 1 + b, the SKE of the PD game is (p*,p*) = (1,1).

c. If c < 1, the SKE of the PD game is p
b c

b c
*

( )
= + −

+ −
2 1

2 1
 and 0 < 

p* < 1.
d. If 1 + b < c, the SKE of the PD game is p* = 1.

Proof. Part a follows from Proposition 2.1 because the PD game is 
strictly monotone increasing.

The function V(p,p) is concave if and only if c – b ≤ 1. In this case, the 

first-order condition 
d
dp

V p pPD( , ) = 0  gives the SKE. If 1 ≤ c, the solution 

is a corner one, at p* = 1 (part b). If c < 1, the solution is interior, and given 
by part c. If c – b > 1, the function V p pPD( , )  is convex, and hence the SKE 
occurs at either p = 0 or p = 1. The value is higher at p = 1, giving part d. ■

It is interesting that in the case of part c, although the simple Kant ian 
equilibrium is Pareto efficient, it entails less than full cooperation. The in-
tuition here is that the payoff to defecting against a cooperator (which is 
unity) is high, and so it may be optimal for both players not to cooperate 
fully. This shows that cooperation, in the Kant ian sense, does not always de-
liver what we might intuitively consider to be “ideal” cooperative  behavior. 
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Parts b and c of the proposition establish that, if c > 1, then the simple Kant-
ian equilibrium entails full cooperation.

We next consider the game of chicken, also known as the hawk-dove 
game, which we take as the names of the strategies. The payoff matrix is 
given in table 2.2.

The payoff function is V p q cpq bp q q pHD( , ) ( ) ( )= + − + −1 1 , where p(q) 
is the probability that the row (column) player plays Dove. We immediately 
verify that hawk-dove is a strictly monotone increasing game, and so the 
simple Kant ian equilibrium is Pareto efficient. The simple Kant ian equilib-
rium is given by:

p
c

b

b
b c

c
b

*
,

( )
, .

=
≥ +

+
+ −

< +











1
1

2
1

2 1
1

2

if

if

Thus, peace reigns if c is sufficiently large; otherwise, there is a positive prob-
ability that peace reigns, although it is not assured. There are three Nash 

equilibria to hawk-dove: ( , ), ( , ), ( , )1 0 0 1
1 1

and
b
b c

b
b c+ − + −

. The simple 

Kant ian equilibrium Pareto dominates the symmetric Nash equilibrium.
We next consider the battle of the sexes game. For the game to be sym-

metric (that is, for V p q V q pRow Col( , ) ( , )= ), we must write the payoff matrix 
unconventionally, as in table 2.3.

Table 2.2 The game of chicken, with 1 > c > b > 0

Dove Hawk

Dove (c,c) (b,1)

Hawk (1,b) (0,0)

Table 2.3 The battle of the sexes: unconventional version, 0 < b < a < 1

Dance Box

Box (b,b) (1,a)

Dance (a,1) (0,0)
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That is, the first strategy for the row player (He) is the event he prefers, and 
the first strategy for the column player (She) is the event she prefers. The 
payoff function for the row player is VBS(p,q) = bpq + p(1 − q) + aq(1 − p),  
and the column player’s payoff is VBS(q,p). The simple Kant ian equilibrium 
in pure strategies is (Box, Dance). It is not Pareto efficient, being dominated 
by both (Dance, Dance) and (Box, Box).

The reader can check that the battle of the sexes (BS) game in mixed 
strategies is not a monotone game. We have:

Proposition 2.3
a. The SKE of the 2 × 2 mixed-strategy BS game of table 2.3 is 

( *, *)
( )

p p
a

a b
= +

+ −
1

2 1
, and 0 < p* < 1.

b. There are BS games in which the SKE is not Pareto efficient.

c. The NE of the mixed-strategy BS game is ˆ ˆp q
a b

= =
+ −

1
1

. It is strictly 
Pareto dominated by the SKE.

d. p p* ˆ< .
Proof. Compute that VBS(p,p) = (b − (1 + a))p2 + p(a + 1), which is 

a strictly concave function of p. Hence the first-order condition gives us the 

SKE, which is p
a

a b
*

( )
= +

+ −
1

2 1
. It is easy to compute that p* is interior in 

[0,1]. Compute that V p p
a
a b

BS( , )
( )
( )

* * = +
+ −

1
4 1

2

. Let a = 0.75, b = 0.01, p = 0,  

q = 0.6. Then VBS(p*,p*) = 0.4400, VBS(p,q) = 0.45, VBS(q,p) = 0.6, and so 
(p*, p*) is Pareto-dominated by (p,q).

The NE of the mixed-strategy BS game is computed from the first-order 
conditions for NE. Write VBS(p,q) = p(bq + 1 − q − aq) + aq. Therefore, 
Row’s best response to q is:

p

bq q aq

bq q aq

b
=

+ − − >
+ − − <

1 1 0

0 1 0

0 1

,

,

[ , ],

if

if

if qq q aq+ − − =








 1 0.

It follows that (1,1) is not an NE, because if q = 1, the best response of Row 
is 0. Likewise (0,0) is not an NE, because if q = 0, the best response of Row 

is 1. The only NE occurs in the third case, when p q
a b

= =
+ −

1
1

. ■
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In other words, simple Kant ian optimization does not generally deliver 
Pareto efficiency in the BS game, although the simple Kant ian equilibrium 
always dominates the Nash equilibrium of the game. From part d, we have 
that in the simple Kant ian equilibrium, both She and He offer to attend 
their favorite event with lower probability than in the Nash equilibrium: in 
other words, they compromise more in simple Kant ian equilibrium than in 
Nash equilibrium.

More generally, we must have that, in any game with a common diago-
nal, the simple Kant ian equilibrium Pareto dominates the symmetric Nash 
equilibrium, as long as the two equilibria are not the same, because the 
symmetric Nash equilibrium is of the form (p,p) and the simple Kant ian 
equilibrium maximizes the payoff of the players on the diagonal of strategy 
space S2.

For Nash equilibrium, it does not matter in which order we write the 
strategies. But for Kant ian equilibrium it does, because Kant ian optimiza-
tion requires a conception of which strategies are the “same” for the two 
players. In the above formulation, of the battle of the sexes, we identified the 
first strategy for the two players as the event that He or She preferred. In con-
trast, we can write the payoff matrix in its traditional form, as in table 2.4.

Table 2.4 The battle of the sexes: conventional version, 0 < b < a < 1

Box Dance

Box (1,a) (b,b)

Dance (0,0) (a,1)

The game in this form lacks a common diagonal. We cannot suppose 
that a simple Kant ian equilibrium exists, and in fact one does not exist. His 
payoff function is now ˆ ( , ) ( ) ( )( )V p q pq bp q p q a= + − + − −1 1 1 , and ˆ ( , )V p p  
is maximized at p = 1. Her payoff function is maximized at q = 0, and so a 
simple Kant ian equilibrium, indeed, does not exist.

Finally, we examine the stag hunt game, the payoff matrix of which is 
shown in table 2.5.
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The story behind the game is as follows. We can cooperate in trying to 
catch a deer, which requires two hunters. Or each of us may defect and go 
after a hare, which can be caught by one hunter but provides less meat than 
the deer would provide for each of us. If Row cooperates but Column de-
fects, then Column’s payoff is surely less than 1(b), and Row will have wasted 
her time hunting the deer alone (so a < 0). The game is strictly monotone 
increasing and so the simple Kant ian equilibrium is Pareto efficient.

Another story modeled by this game, perhaps important from an evolu-
tionary viewpoint, is the following, played between two individuals who are 
prospective mates. Should I Grab all the meat available, or Share it with 
my prospective mate? Unlike the prisoner’s dilemma game, Grab is not a 
dominant strategy: in fact, (Share, Share) is a Nash equilibrium. The reason 
neither player will defect from (Share, Share) is that each values having a 
prospective mate who is well nourished (hence b < 1). In addition to this 
Nash equilibrium, there are two others: (0,0) is one, and there is a mixed-
strategy Nash equilibrium. (For the details, see chapter 8.) However, the 
unique simple Kant ian equilibrium is (Share, Share). This is an important 
game, as it will be shown in chapter 8 that Kant ian players have an evolu-
tionary advantage over Nash players in stag hunts.

The stag hunt has been studied by philosopher Brian Skyrms (2004), 
who focuses on signals that Nash players could send each other to attempt 
to coordinate on the good Nash equilibrium, (Share, Share). If players rea-
son in the Kant ian manner, no signaling is necessary, as the SKE is uniquely 
(Share, Share). Perhaps one could interpret Skyrms as thinking that signal-
ing between players could create common knowledge in the sense needed 
for cooperation, but his approach seems more closely wedded to thinking of 
cooperation as a particular refinement of Nash equilibrium in the stag hunt.

Table 2.5 The stag hunt, with a < 0 < b < 1

Cooperate (Share) Defect (Grab)

Cooperate (Share) (1,1) (a,b)

Defect (Grab) (b,a) (0,0)
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2.4 Some Simple Asymmetric Games

Besides the 2 × 2 games, three other simple games about which much 
has been written are the dictator, ultimatum, and trust games. I will as-
sume classical preferences: a player’s von Neumann–Morgenstern utility is 
some strictly concave increasing function of the monetary prize, u, normal-
ized so that u(0) = 0 and u(1) = 1. The second player’s von Neumann– 
Morgenstern utility function is v, similarly normalized. The stochastic 
dictator game begins with Nature’s choosing one of two players to be the 
dictator, who then assigns a division of a dollar between herself and the 
other player. Thus, assuming that each player is chosen to be the dicta-
tor with  probability one-half, the expected utility of the first player, if she 
keeps x, and of the second  player, who, if chosen, decides to keep y, is 
1
2

1( ( ) ( ))u x u y+ − . In a simple Kant ian equilibrium, the first player chooses 

x to maximize 
1
2

1( ( ) ( ))u x u x+ − , the solution to which is x = 1
2

. Clearly, 

the second player also chooses x = 1
2

. Strict concavity is necessary to gener-
ate this result.

The standard dictator game is asymmetric, because it begins after Nature 
has chosen the dictator. We render the game symmetric by beginning it 
before Nature moves.

We render the standard ultimatum game symmetric in the same fashion. 
In the stochastic ultimatum game, a player’s strategy consists of an ordered 
pair (x,z), where x is what he will give to the other player, should he be 
chosen to be the decision maker, and z is the minimum that he will accept, 
should the other player be chosen to be the decision maker. The game has 
three stages: first, Nature chooses the ultimator; second, the ultimator pres-
ents an offer; third, the other player either accepts or rejects the offer. The 
unique subgame perfect NE is (x,z) = (1,0).

It is not obvious how to model cooperation in the ultimatum game. This 
is the first time we have encountered a game where the strategy is multi-
dimensional. It seems to me that a Kant ian should think as follows. If I were 
chosen to be the ultimator, and were to propose to keep x, this must be the 
amount I would also like the other person to keep, were she chosen to be 
the ultimator, and hence I must accept any amount from her that is at least 
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1 − x. Therefore, z ≤ 1 – x. Consequently, the simple Kant ian solution is 
the solution to the program:

max ( ) ( )
1
2

1
2

1

u x u z

z x

+

≤ −
subj. to

.

The unique solution, if u is strictly concave, is ( , ) ( , )x z = 1
2

1
2

.

Arguably, the simple Kant ian equilibria, in these two games, are closer 
to what is often observed in experiments than the Nash equilibrium. More-
over, we have established this result without recourse to including a sense 
of fairness in the utility function. Granted, in the ultimatum game, players 
who reject offers of less than 0.25 may say that they do so because the of-
fers were unfair. My claim is that those offers are considered unfair because 
these are not the offers a person should make if he recognizes the arbitrari-
ness of being chosen the ultimator. Thus, one uses the Kant ian protocol 
because the situation strongly suggests that “we are all in the same boat”—
Nature is just flipping a coin to choose the ultimator. In the more conven-
tional explanation, it is a social norm to share in situations of solidarity, and 
deviators are punished by norm followers. The same explanation applies 
in the dictator game, even though no retaliation is possible against a stingy 
dictator. I prefer to say that the arbitrariness that Nature’s choice induces 
in players suggests that the right (moral) thing to do is to view the game as 
symmetric, and use of the Kant ian protocol (cooperation) is called for. The 
morality, however, enters in the instruction to optimize in a certain way, 
not as altruism toward the other player or, more generally, as an additional 
argument of preferences.

These games demonstrate what is a general feature of Kant ian optimiza-
tion in stage games. The notion of subgame perfection does not apply. Fair-
ness enters, not as an argument of preferences, but as the realization that 
Nature could have chosen either player to be the first. Thus, a Kant ian 
optimizer in these games asks, “How would I like each of us to play if each 
of us could be chosen to be the first player?”

Last, I discuss the trust game, a public-good game. There are two players, 
who draw lots to determine who moves first. Each player is endowed with 
M units of value. Player One chooses an amount, x, to give to Player Two. 
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Player Two, however, receives ax units of value, where a > 1 is a constant 
known to both. Then Player Two returns some amount, y, to Player One, 
which is again multiplied by the experimenter to become ay, and the game 
is over. It is played only once.

I present four ways of modeling the trust game.
1. Conventionally, the game is modeled as a stage game, in which each 

player’s payoff is the amount of money she ends up with. The game has 
three stages: first, Nature chooses the order of players; second, the first 
player moves; third, the second player moves. The unique subgame perfect 
Nash equilibrium is x = y = 0 if the players have self-interested preferences.

2. We next model this as a game where players are Kant ian. Suppose 
that a player’s von Neumann–Morgenstern utility function for money 
lotteries is u. Unlike in subgame-perfect analysis, each player calcu-
lates before Nature moves. Before the game begins, her expected utility 

is 
1
2

1
2

u M x ay u M ax y( ) ( )− + + + − . She chooses a strategy (x,y) that she 

would like both players to choose, which is the one that maximizes her 
expected utility:

max ( ) ( )
1
2

1
2

0
0

u M x ay u M ax y

x M
y

− + + + −

≤ ≤
≤ ≤

s.t.
( )λ

MM ax+ .

We look for a solution of this program where the first constraint binds and 
the second constraint is slack. The Kuhn-Tucker conditions are:

( ) ( ) ( )
( ) ( )
∂ − ′ − + + ′ + − = ≥
∂ ′ − + =
x u M x ay au M ax y
y au M x ay

λ 0
′′ + −u M ax y( )

x = M.
Substituting from the ( )∂y  condition into the ( )∂x  condition, we have:

( ) ( )a u M ax y2 1 0− ′ − + ≥ ,

which is surely true, since a > 1. Now the ( )∂y  condition implies that

M x ay M ax y− + > + − ,
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because u′ is a decreasing function, and hence it follows that x < y and so, 
y > M. We should also expect that y < (1 + a)M, if u′(0) is large. In sum, 
at the simple Kant ian equilibrium of this game we have:

x M M y a M= < < +, ( )1 .

3. In this version, each player maximizes total wealth: that is, each 
 player’s payoff is the utilitarian social welfare function. We examine the 
subgame-perfect Nash equilibrium by backward induction. The second 
player will have an endowment M + ax when she must move; her problem 
is to choose y to

maximize M + x + y + ay subject to y ≤ M + ax.
The solution is y = M + ax. Knowing this, the first player chooses x to

maximize M − x + M + ax + 0,
whose solution is x = M. Thus, the equilibrium is:

x = M, y = M(1 + a).
Total wealth is maximized over all feasible allocations, at a(1 + a)M. 
 However, the allocation is very unequal: the entire wealth goes to the first 
player.

4. In this version, each player maximizes the minimum payoff to both 
players. The payoff function for each is the egalitarian social welfare func-
tion. We examine the subgame-perfect Nash equilibrium. When Player Two 
moves, she has wealth M + ax. She chooses y such that ay = M + ax − y, 

for this equalizes the two wealths. Thus, y
M ax

a
= +

+1
. Knowing this, Player 

One chooses x to maximize min( , )M x a
M ax

a
M ax

M ax
a

− + +
+





 + − +

+1 1
. 

The solution is:
x = M, y = M,

and each player ends up with wealth aM.
James Cox and colleagues (2009) performed the trust game with students 

and reported their results. Thirty-four games were played, where M = 10 
and a = 3. From fig. 1 of their paper, we see that in six of these games, the 
play was consistent only with the simple Kant ian equilibrium—that is, the 
second model described above, or x = 10 and 10 < y < 40. (Cox et al. 
2009 do not call it that: I am imposing my interpretation on the results.) 
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In another three of these games, the play was that of the model where each 
player is a maximinner: x = y = M. In four of the thirty-four games, the 
classical Nash equilibrium was played: x = y = 0. There are no games in 
which version (3) was played, in which both players possess a utilitarian 
payoff function. In most of the remaining games, both players gave less than 
M to the opponent, but did give some positive amount. In eleven out of 
thirty-four games, Player One transferred his entire endowment to Player 
Two: this shows trust and is consistent with three of the four above models 
of the game.

Little interpretive gloss on the results is provided in Cox et al. (2009); 
however, James Walker and Elinor Ostrom (2009) do provide an interest-
ing gloss on the results of the earlier paper. The authors discuss the results 
of experiments with three games: the trust game of Cox et al. (2009), an-
other public-good game, and a common-pool resource game. They write 
that each of these games are instances of “social dilemmas”: “Social dilem-
mas characterize settings where a divergence exists between expected out-
comes from individuals pursuing strategies based on narrow self-interests 
versus groups pursuing strategies based on the interests of the group as a 
whole. . . . Individuals make decisions based on individual gains rather than 
group gains or losses; and environments that do not create incentives for 
internalizing group gains or losses into individuals’ decision calculus” (92).

From my viewpoint, these authors are confounding cooperation with al-
truism. As I showed, the fully cooperative solution is attained by a Kant ian 
optimizer who has no concern for others, as such: her morality consists not 
in caring explicitly about the payoff accruing to other players but rather in 
playing the strategy she would like all to play. Saying that the problem in 
social dilemmas is based on “a divergence between . . . narrow self-interest 
versus . . . strategies based on the interests of the group as a whole” is, I 
think, a gratuitous interpretation of the thought process. (If we interpret 
this phrase as saying that each player is utilitarian, then there is no evidence 
for the claim in their experiment.) Playing the strategy that one would like 
everyone to play is, for me, motivated by the common knowledge assump-
tion (Method Two) and trust, not by a concern for the welfare of the group 
as a whole. It entails a recognition that cooperation can make me better off 
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(incidentally, it makes all of us better off). But that parenthetical fact is not 
or need not be the motivation for my playing “cooperatively.” The fact that 
these games were played only once by a team shows that building a reputa-
tion was not an issue.

My interpretation of the Cox et al. (2009) results for the trust-game ex-
periment is that about one-third of the players chosen to be first movers 
were playing (their part) of the simple Kant ian equilibrium, because they 
had trust in their opponents/partners. About 54 percent of their partners 
responded by playing (their part) of the Kant ian equilibrium (that is, six 
out of eleven). Another 33 percent of the second players in these matches 
 equalized the payoffs of the two players. Only one of the second players in 
these matches played the Nash solution in the subgame that she faced (that 
is, returning nothing to the first player). Only four out of thirty-four pairs 
played the Nash equilibrium, each contributing nothing to their partner. 
I cannot reject the hypothesis that a significant number of individuals are 
Kant ian optimizers. It is difficult to distinguish between models (2) (Kant-
ian) and (4) (equalize the payoffs). Maximization of team payoffs is not 
observed.

2.5 Economies with Production

We now introduce more complex games, associated with simple production 
economies, which are more complex than simple matrix games. The goal 
is to study, here, simple Kant ian equilibrium in the games that are induced 
in these economies.

There are n producers, each with a concave utility function ui defined 
over consumption (x) and effort (E). Effort is measured in efficiency units 
(if s is a person’s skill level and he exerts E units of efficiency effort, then his 
labor time is E s/ ). Production is defined by a concave function mapping 
total units of efficiency labor into total output. Defining E ES i= ∑ , then 
total output at the effort vector E = (E1,…,En) is G(E S).

An allocation rule X = (X1,…,Xn) assigns output to each individual as 
a function of the vector of efforts: thus, X E E xi n i( ,..., )1 =  is i’s share of the 
output when the effort vector is E = (E1,…,En).
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Suppose that we consider a fishing economy: fishers fish on a lake, and 
there are decreasing returns to scale in labor expended fishing, due to con-
gestion effects. Formally, we say that the production function G is concave. 
The allocation rule is that each fisher keeps his catch. This yields the pro-
portional rule:

x X E E
E
E

G Ei i n
i

S
S= =Pr, ( ,..., ) ( )1 ;

that is, except for random variation, the fish caught by a fisher will be pro-
portional to the labor in efficiency units he expends. Traditionally, this al-
location rule has been used in fishing communities. Given preferences, 
technology, and the allocation rule, a game is defined in which the payoff 
function for fisher i at an effort allocation is given by:

 V E E E u
E
E

G E Ei n i
i

S
S i( , ,..., ) ( ( ), )1 2 = . (2.1)

In this chapter, we assume homogeneous preferences, and so ui = u for 
all i.

It is well known that, if G is strictly concave, then the Nash equilibrium 
of this game is Pareto inefficient. Fishers fish too much: each does not take 
into account the fact that his labor contributes to a public bad, the reduc-
tion of the productivity of the lake. The Nash equilibrium of the game {Vi} 
is given by:

 ( )
[ ]
[ ]

( ) ( )
( )∀ − = ′ + −i

u i
u i

E
E

G E
E
E

G E
E

i

S
S

i

S

S

S
2

1

1 , (2.2)

where uj[i] is the jth partial derivative of u evaluated at the consumption 
bundle of individual i. Equation (2.2) says that the marginal rate of substitu-
tion for each player is equal to a convex combination of the marginal prod-

uct (G′(ES)) and the average product (G E
E

S

S

( )). But the condition for Pareto 
efficiency at an interior solution is:

 ( )
[ ]
[ ]

( )∀ ≡ − = = ′i MRS
u i
u i

MRT G Ei S2

1

. (2.3)

Only in the case where G is linear (and so the average and marginal prod-
ucts are equal) does (2.2) reduce to (2.3). In general, the MRSi is greater 
than the MRT (because the marginal product is less than the average prod-
uct for strictly concave G), and each fisher could benefit from a reduction 
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in the effort of all players. This example is the simplest form of the “tragedy 
of the commons” (Hardin 1968).

The game defined by (2.1) is strictly monotone decreasing: if another 
player increases her fishing time, then ceteris paribus, my payoff falls, be-
cause the productivity of the lake has decreased. Therefore, the simple 
Kant ian equilibrium, which exists under the hypothesis that all preferences 
are identical, is Pareto efficient in the game by Proposition 2.1.

Why do I italicize these three words? Because the game defined by (2.1) 
considers only proportional allocations of fish and effort: in other words, 
Proposition 2.1 tells us that, restricted to the set of allocations in which fish 
received is proportional to effort expended, the simple Kant ian equilibrium 
is Pareto efficient. We now ask: Is it the case that the simple Kant ian equi-
librium is Pareto efficient in the economic environment? Might there be, in 
other words, some nonproportional allocation of fish and labor that Pareto 
dominates it?

Let’s compute the simple Kant ian equilibrium for this game. Each fisher 
solves the problem:

 max ( ( ), )
E

u
E
nE

G nE E ; (2.4)

the first-order condition is:

 u i G nE
n
n

u i
u i
u i

G nE1 2
2

1

0[ ] ( ) [ ]
[ ]
[ ]

( )′ + = − = ′or , (2.5)

and so the simple Kant ian equilibrium is Pareto efficient in the economy. 
Thus, Kant ian reasoning overcomes the commons’s tragedy in a strong way. 
It is doubly Pareto efficient.

In contrast, the Nash equilibrium of the game is doubly Pareto ineffi-
cient. We’ve noted above that it fails to be Pareto efficient in the economy. 
But it is not Pareto efficient in the game either, because it is Pareto domi-
nated by the simple Kant ian equilibrium, which is an allocation feasible in 
the game.

Indeed, the argument is more general. Let an allocation rule be 
specified by X = (X1,…,Xn) where Xi n: ℜ → ℜ+ + with the identity 

X E E G Ej

j

n S∑ =( ,..., ) ( )1  for all effort vectors (E1,…,En). Suppose that the 

rule has a common diagonal, meaning that:
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 ( )( )( ( , ,..., )
( )

)∀ ≥ ∀ =E i X E E E
G nE

n
i0 . (2.6)

Of course, the proportional rule XPr has a common diagonal in this sense. 
Then:

Proposition 2.4 The SKE for any concave production economy and any 
symmetric allocation rule is Pareto efficient in the economic environment.

Proof. The typical producer maximizes u
n

G nE E( ( ), )
1

, using the defini-

tion at (2.6), and the characterizing first-order condition is (2.5). ■
Another historically important allocation rule for hunter-gatherer socie-

ties was the equal-division rule, defined by:

 X E E
G E

n
ED i n

S
, ( ,..., )

( )1 = . (2.7)

Because the equal-division rule is symmetric, it follows from Proposition 2.4 
that the simple Kant ian equilibrium for hunting societies—which often 
used this rule—is Pareto efficient in the economy. Again, the Nash equilib-
rium of the game defined by XED is Pareto inefficient. But the tragedy is of 
a different sort from that in the fisher economy: this time, hunters hunt too 
little at the Nash equilibrium. The characterizing condition for an interior 
Nash equilibrium is:

 − = ′
u i
u i n

G ES2

1

1[ ]
[ ]

( ) . (2.8)

As long as n > 1, the MRS for each player is less than the MRT. Note that 
this is also the case when G is linear, and in this sense the tragedy is deeper 
than in the fishing economy.

In sum, Kant ian optimization can resolve inefficiencies that plague au-
tarkic optimization in simple fishing and hunting economies. Did the pro-
ducers in some such economies, in ancient times, learn to optimize in the 
Kant ian manner, leading to the greater success of their communities? Is it 
possible that Kant ian thinking became a meme, passed down through the 
generations, so that the individual fitness of the members of these groups 
was greater than of those in groups using the Nash optimization protocol? 
Can we see today, in hunting and fishing economies that remain, indica-
tions of Kant ian reasoning?
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2.6 Four Models

I propose a 2 × 2 typology of modeling, shown in table 2.6.

The northwest cell in the matrix is the classical model. Behavioral econo-
mists alter the column of the matrix by proposing nonclassical preferences 
but retaining Nash optimization; my proposal is to change the row of the ma-
trix but retain classical preferences. (The southeast cell of the matrix studies 
Kant ian equilibrium with altruistic preferences, considered in chapter 5.) 
To entertain this proposal one must of course relax one’s belief that autarkic 
optimization is the only rational way of thinking in a game. Although this 
may be a correct statement for a decision problem, it is not obviously so for a 
game: recall Methods One and Two at this chapter’s beginning. Those of us 
who have been schooled in Nash equilibrium tend to view many examples 
of successful cooperation as irrational. Would it not perhaps be more mod-
est to think that we have not properly characterized rationality in games? In 
some social situations, at least, people may adopt the Kant ian protocol; they 
may reason cooperatively, as it were, resolving free-rider problems.

At the danger of belaboring the point, I repeat: the main idea of this book 
is that we understand cooperation, not by altering preferences from classical 
self-regarding ones, but by altering the manner in which players optimize. 
The curious reader may ask: Is this a distinction without a difference—that 
is, could we always represent a simple Kant ian equilibrium as a Nash equi-
librium where players have altered preferences of some kind? I will argue, 
below in chapter 6, that the answer is no.

2.7 Literature Notes

Jean-Jacques Laffont (1975) wrote: “To give substance to the concept of a 
new ethics, we postulate that a typical agent assumes (according to Kant’s 

Table 2.6 A typology of models

preferences → 
optimization ↓

Self-Interested Altruistic / Complex

Nash  classical behavioral economics

Kant  this book, most chapters this book, chapter 5
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moral) that the other agents will act as he does, and he maximizes his utility 
function under this new constraint. . . . Our proposition is then equivalent 
to a special assumption of others’ behavior. It is clear that the meaning of 
‘the same action’ will depend on the model and will usually mean ‘the same 
kind of action’” (430). Not only does Laffont deserve credit for suggesting 
what is argued here, but his recognition that a Kant ian must generally think 
in terms of the same kind of action will become clear in chapter 3.

Ted Bergstrom (1995), in a discussion of selective adaptation, defines 
the “Kant ian golden rule for asexual siblings” as “Act toward your siblings 
as would be in your own best interest if your siblings’ action would mimic 
your own” (61).

Robert Sugden (1982) discusses philanthropy and argues, with empirical 
evidence, that the Nash assumption (that donors take the contributions of 
others as given) is not empirically verified. He writes: “Or suppose that each 
person, instead of having Nash conjectures, believes that if he gives a cer-
tain minimum sum of money, everyone else will do the same, but he gives 
less, everyone else will give nothing” (342). This is his Kant ian premise.

Tim Feddersen (2004) offers a “group-based ethical model” to explain 
the voting paradox. He writes, “First, ethical agents evaluate alternative be-
havioral rules in a Kant ian manner by comparing the outcomes that would 
occur if everyone who shares their preferences were to act according to the 
same rule” (107).

Kjell Arne Brekke, Snorre Kverndokk, and Karine Nyborg (2003) pro-
pose that in a symmetric contribution game with a public good, agents de-
fine the moral action as the simple Kant ian equilibrium (not those words). 
But they then introduce a penalty term in utility, which decreases utility 
to the extent that the player deviates from the Kant ian action, so that it 
becomes a Nash equilibrium to play the simple Kant ian equilibrium. From 
my viewpoint, this a gratuitous move: Why say that players pay a “cost” for 
deviating from the Kant ian action, rather than just saying that they play the 
action they think is the right thing to do? Is not the latter simpler, although 
heretical from the classical viewpoint?
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t h r e e

Heterogeneous Preferences

Multiplicative and Additive Kantian Optimization

3.1 Monotonicity and Pareto Efficiency

We now consider games V = ={ | ,..., }V i ni 1  where the strategies (efforts) 
are chosen from the set S = ∞[ , )0 , but the payoff functions are in general 
different. The concept of simple Kant ian equilibrium is no longer useful: 
generally, a simple Kant ian equilibrium will not exist.1

Suppose that the game models the problem of fishers on a lake, where 
the labor expended by each fisher reduces the marginal productivity of the 
lake, because of congestion effects. The payoff function for a fisher is his 
utility, which is a function of fish caught and effort expended. The payoff 
functions of the game are given in equation (2.1).

Suppose, at an effort allocation (E1,…,En) a fisher thinks: “I’d like to in-
crease my fishing time by 10 percent. But I should do this only if I would be 
happy if all were to increase their fishing time by 10 percent.” Do not at this 
point ask where this thought comes from, but let’s define an equilibrium 
with respect to such thinking.

Definition 3.1 A multiplicative Kant ian equilibrium in a game {Vi} is an 
effort vector (E1,…,En) such that nobody would prefer to rescale everybody’s 
effort by any nonnegative factor. Formally:

 ( )( )( ( ,..., ) ( ,..., ))∀ ∀ ≥ ≥i r V E E V rE rEi n i n0 1 1 . (3.1)

We denote such an allocation a K× equilibrium.
Note that multiplicative Kant ian equilibrium assumes a game in which 

the strategy spaces of players are intervals of real numbers. Thus, games with 
discrete strategy spaces consisting of two alternatives, such as the prisoner’s 
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dilemma, must be formulated as mixed-strategy games, so that the strategy 
space is the interval [0,1]. In this chapter, the focus will be on games in-
duced by production economies, where we take the strategy space (effort 
choice) to be ℜ+.

The reader should note the formal similarity between multiplicative 
Kant ian and Nash equilibrium. Both use ordinal preferences only. Each 
considers a counterfactual: with Nash reasoning, the counterfactual is that I 
alone change my strategy, whereas in Kant ian reasoning, I imagine that all 
players change their strategies in a prescribed way. An equilibrium, in either 
case, is a strategy profile that dominates all admissible counterfactual pro-
files. An optimizing agent in both cases evaluates the counterfactual profile 
using his own preferences only. Other similarities will appear in the discus-
sion of existence and dynamics (chapter 7).

The fishing game is a strictly monotone decreasing game: if anyone else 
increases his effort, my catch decreases, because the productivity of the lake 
decreases. We generalize Proposition 2.1:

Proposition 3.1 Let E = ( ,..., )E En1  be a strictly positive K× equilibrium 
in a strictly monotone (increasing or decreasing) game. Then it is Pareto ef-
ficient in the game.

Proof.
1. Let the game be strictly monotone decreasing. Suppose that E were 

Pareto dominated by an effort vector E* * *( ,..., )= E En1 . Let k be an index 

such that E
E

i

i
*  is minimized. Define r

E
E

k

k= * . Note that rE Ek k= *  and for j k≠ ,  

rE Ej j≤ *, by definition of r. Furthermore, for at least one j, rE Ej j< *. For 
otherwise, E E* = r , and since E* Pareto dominates E, at least one agent 
would prefer rE to E, which contradicts the fact that E is a K× equilibrium. 
It follows that:
 V r V Vk k k( ) ( ) ( )*E E E> ≥ ,  (3.2)

where the first inequality follows because the game is strictly monotone de-
creasing, and the second follows because E* Pareto dominates E. But (3.2) 
contradicts the fact that E is a K× equilibrium—agent k would advocate 
changing the scale of E by a factor of r. This contradicts the supposition that 
E is not Pareto efficient in the game.
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2. If the game is strictly monotone increasing, then we define k to be an 
index that maximizes E

E

i

i
* . The positivity of the vector E guarantees that this 

number is not infinite. The proof proceeds as above. ■
Strictly monotone decreasing games are ones in which congestion effects 

abound, and strictly monotone increasing games are ones possessing posi-
tive externalities, such as when the efforts of players are directed at produc-
ing a public good from which everyone benefits.

The counterfactual in Definition 3.1 to which players compare the pres-
ent allocation is one in which the entire strategy profile is rescaled by a non-
negative constant. Alternatively, we might consider translating the strategy 
profile by a constant. This leads to another Kant ian equilibrium concept:

Definition 3.2 An additive Kant ian equilibrium (K+) is an allocation 
such that nobody would prefer to translate all efforts by a (positive or nega-
tive) constant. That is:

 ( )( )( ( ,..., ) ( ,..., ))∀ ∀ ≥ − ≥ + +i r E V E E V E r E ri i n i n1 1
, (3.3)

where it is understood that we replace E rj +  with zero if E rj + < 0.
Note that the permissible values of the constant, r, by which agent i con-

templates translating the effort vector are those that are feasible for him—
that is, will not render his effort negative. The analog of Proposition 3.2 con-
tinues to hold—except this time, we need not require that the equilibrium 
allocation be positive.

Proposition 3.2 Let E = ( ,..., )E En1  be a K+ equilibrium in a strictly mono-
tone (increasing or decreasing) game. Then it is Pareto efficient in the game.

Proof. Suppose that the game is strictly monotone increasing but E is 
Pareto dominated by E* * *( ,..., )= E En1 . Write r E Ei i i= −* , and let r* = maxri, 
which is achieved for some agent i*. Define ˆ ( ,..., )* *E E= + r r . Now:

 V V Vi i i* *
*( ˆ ) ( ) ( )

*

E E E> ≥ , (3.4)

where the first inequality follows by strict monotonicity and the second by 
Pareto domination. This contradicts the fact that E is a K+ equilibrium, 
because agent i* would have preferred translating the effort vector E by r*. 
The contradiction proves the proposition. An analogous proof works if V is 
strictly monotone decreasing. ■
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For the next proposition, we require a restriction on the class of abstract 
games that models the interpretation of the strategy space as a space of 
 efforts—that is, actions that have a cost to the individual.

Definition 3.3 A game V = {Vi}, where each player’s strategy space is 
ℜ+ , is quasi-economic if for all i and any vector E− − +=i i i nE E E E( ,..., , ,..., )1 1 1 ,  
V Ei i i( , )E−  is quasi-concave in Ei and becomes unboundedly negative  
as Ei → ∞ .

A quasi-economic game is one in which, fixing the efforts of all players 
but i, the payoff to player i has a unique local maximum on his strategy 
space ℜ+, and effort becomes unboundedly costly to the player as it be-
comes large. Thus, fixing the contributions of others, player i’s payoff may 
initially increase with his effort, but eventually the cost of effort overwhelms 
the benefit he accrues from it. I call such a game quasi-economic because 
it restricts the meaning of “effort” to having a property that we attribute to 
effort in economic contexts.

Let us now contrast Kant ian equilibrium with Nash equilibrium, with 
regard to Pareto efficiency. We know that the tragedy of the commons (im-
plying Pareto inefficiency) is a property of Nash equilibrium in some games 
with negative externalities and that the free-rider problem (Pareto ineffi-
ciency) afflicts Nash equilibrium in some games with positive externalities. 
The next proposition shows that tragedies of the commons and free-rider 
problems are universal ones for Nash equilibrium in quasi-economic mono-
tone games.

Proposition 3.3 Let V ={ }Vi  be a strictly monotone, continuously differ-
entiable, quasi-economic game. Let E = ( ,..., )E En1  be an interior NE of the 
game. Then E is Pareto inefficient in the game.

Proof.
1. We assume n = 3 for notational simplicity. Let the game be strictly 

monotone increasing. Define the function f y z1( , ) for nonzero vectors 
( , )y z ∈ℜ+

2  by:

 f y z x x x V x y z V1 1 10( , ) lub{ | ( ( , , )) ( )}= ≤ ′ < ⇒ + ′ >E E . (3.5)

Note that:

(a) f 1 0 0 0( , ) =  , because E is an NE;
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(b) f y z1 0( , ) >  if ( , ) ( , )y z ≠ 0 0 , because V is strictly monotone increas-
ing and continuous;

(c) f y z1( , ) < ∞ because V is quasi-economic; and
(d) V f y z y z V1 1 1( ( ( , ), , )) ( )E E+ =  by the least-upper-bound property.

Property (b) holds because, by strict monotonicity, V y z Vi i( ( , , )) ( )E E+ >0 ;  
property (c) holds because Vi eventually becomes arbitrarily small as x 
increases.

2. In like manner define:

 f x z y y y V x y z V2 2 20( , ) lub{ | ( ( , , )) ( )}= ≤ ′ < ⇒ + ′ >E E  (3.6)
 f x y z z z V x y z V3 3 30( , ) lub{ | ( ( , , )) ( )}= ≤ ′ < ⇒ + ′ >E E . (3.7)

Clearly functions f f2 3and  satisfy the analogs to (a), (b), and (c) in step 1.
3. Suppose that we can find a vector ( , , )x y z ∈ℜ+

3  such that:

 x f y z y f x z z f x y≤ ≤ ≤1 2 3( , ), ( , ), ( , )and , (3.8)

with at least one of the three inequalities strict. Then it follows that:
( )∀i  V x y z Vi i( ( , , )) ( )E E+ ≥ ,

with at least one inequality strict, and so E is not Pareto efficient. This is 
our task.

4. Choose (y,z) small and positive, and define x f y z= 1( , ) .
Then we have:

 

V f y z y z V

V x f x z z V

1 1 1

2 2 2

( ( ( , ), , )) ( )

( ( , ( , ), ))

E E

E

+ =
+ = (( )

( ( , , ( , ))) ( )

E

E EV x y f x y V3 3 3+ = . (3.9)

We know that:

 
∂
∂

+ <V
E

f y z y z
1

1
1 0( ( ( , ), , ))E  (3.10)

by the quasi-concavity of V1 in E1. Now differentiate the first equation in 
(3.9) with respect to y:

 
∂
∂

+ + ∂
∂

+V
E

f y z y z f y z
V
E

f y
1

1
1

1
1

1

2
1( ( ( , ), , )) ( , ) ( ( ( ,E E zz y z), , )) .= 0  (3.11)

By strict monotonicity of V, the second term in (3.11) is positive, and by 

(3.10), the ∂
∂
V
E

1

1
 factor in the first term is negative for small (y,z) not equal 
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to (0,0). However, when (x,y,z) = (0,0,0), ∂
∂

=V
E

1

1 0, a necessary condition 

of NE. It follows from (3.11) and the implicit function theorem that the 
function f 1 is indeed differentiable when ( , ) ( , )y z > 0 0 , and its derivatives 
are given by:

 ( ( , ), ( , )) ( / , /f y z f y z
V
E

V
E

V
E

V
1
1

2
1

1

2

1

1

1

3

1

= − ∂
∂

∂
∂

− ∂
∂

∂
∂∂E1 ) . (3.12)

Furthermore, it follows that:
 lim ( , ) ( , )

,y z
f y z f y z

→
= ∞ =

0 1
1

2
1 , (3.13)

by (3.11) and its analog, produced by differentiating the first equation in 
(3.9) with respect to z.

5. In like manner, by differentiating the second and third equations in 
(3.9), we deduce:

 lim ( , ) lim ( , ) lim
, , ,x y x y x z

f x y f x y f
→ → →

= ∞ = =
0 1

3

0 2
3

0 1
2(( , ) lim ( , ).

,
x z f x z

x z
=

→0 2
2  (3.14)

6. We finally prove what is required from step 3 above, that for suffi-
ciently small (y,z):

y f x z z f x y≤ ≤2 3( , ) ( , )and .

By the definition of x (step 4), we must show:

 y f f y z z z f f y z y≤ ≤2 1 3 1( ( , ), ) ( ( , ), )and , (3.15)

with at least one inequality strict. Note that, since y and z are small, we have:

 ( , ) [ , ] [ , ] ( ( , ), ) ( , )

(

′ ′ ∈ × ⇒ <
′

y z y z f f y z z f y z

y

0 0 1 1
2 1

1
1

,, ) [ , ] [ , ] ( ( , ), ) ( , )′ ∈ × ⇒ <z y z f f y z y f y z0 0 1 1
3 1

2
1

, (3.16)

because all the partial derivatives of the functions f j become arbitrarily large 
as ( , ) ( , )y z → 0 0 , by (3.13) and (3.14). But the inequalities in (3.16) inte-
grate to give (3.15), and both inequalities are strict.

Hence, the NE E is inefficient.
7. If V is a strictly monotone decreasing game, an analogous argument 

works. The proof obviously generalizes to n > 3, and the proof for n = 2 is 
simpler. ■

This proposition enables us to draw a sharp distinction between Nash 
and Kant ian equilibrium: Nash equilibria are universally inefficient in 
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monotone, quasi-economic games, and Kant ian equilibria are almost al-
ways efficient.

3.2 Fishing and Hunting Economies

We return to the study of production economies of chapter 2, but we now 
suppose that the fishers/hunters have arbitrary concave preferences over con-
sumption and effort represented by (distinct) utility functions { | ,..., }u i ni = 1 .  
In the fishing economy, XPr continues to be the allocation rule “each fisher 
keeps her catch.” A simple Kant ian equilibrium will (generally) not exist: 
that is, each fisher would (generally) choose a different effort vector on the 
diagonal of ℜ+

n as the common level of effort. Even if we relax the definition 
and define E i*  as the effort that fisher i would like all to expend, the vector 
( ,..., )* *E E n1  will not be Pareto efficient.

Now let the game {Vi} be the fishing game derived from the production 
economy; that is:

V E E u
E
E

G E Ei n i
i

S
S i( ,..., ) ( ( ), )1 = .

The fact that any positive multiplicative Kant ian equilibrium is Pareto 
efficient in the game {Vi} does not imply that it is Pareto efficient in the 
economic environment e = (u1,…un,G), where feasible allocations are not 
restricted to be proportional allocations. As I pointed out in chapter 2, the 
game requires allocations to be proportional, but there may be some nonpro-
portional allocation in the economy (requiring transfers among fishers) that 
Pareto dominates the multiplicative Kant ian equilibrium. The next proposi-
tion shows that this is not the case.

Definition 3.4 A proportional allocation that is Pareto efficient in the 
economic environment (u1,…un,G) is a proportional solution. (This defini-
tion was introduced in Roemer and Silvestre 1993.)

Proposition 3.4 Any strictly positive K× equilibrium in the fishing econ-
omy, which employs the proportional allocation rule, is Pareto efficient (in 
the economic environment). Conversely, any proportional solution is a K× 
equilibrium.

Proof. By concavity, the first-order condition is sufficient to establish K× 
equilibrium:
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 ( )( ( ( ), ) .∀ =
=

i
d
dr

u
rE
rE

G rE rE
r

i
i

S
S i

1

0  (3.17)

Compute that (3.17) reduces to:

 u
E
E

G E E u Ei
i

S
S S i i

1 2 0⋅ ′ + =( ( ) ) ;  (3.18)

dividing through by the positive number Ei, and rearranging, we have:

 ( )
[ ]
[ ]

( )∀ − = ′i
u i
u i

G E
i

i
S2

1

. (3.19)

But this is the statement that, for every fisher, the marginal rate of substitu-
tion between fish and effort equals the marginal rate of transformation of 
effort into fish, which is the characterizing condition for Pareto efficiency of 
an interior solution because the economy is convex.

To prove the converse, let {( , ) | ,..., }x E i ni i = 1  be a proportional solution. 
We must show that:

 ( ) ( ( ( ), ) )∀ =i u
E
E

G rE rE ri
i

S
S i is maximized at 1 . (3.20)

Suppose that Ei > 0 but (3.20) is false for some i. Then by concavity:
d
dr

u
E
E

G rE rE
r

i
i

S
S i

=

≠
1

0( ( ), ) ,

which reduces to − ≠ ′
u x E
u x E

G E
i i i

i i i
S2

1

( , )
( , )

( ),

contradicting the fact that the allocation is Pareto efficient. On the other 
hand, if Ei = 0, then (3.20) is trivially true. ■

Recall Laffont’s comment: “It is clear that the meaning of ‘the same ac-
tion’ will depend on the model and will usually mean ‘the same kind of 
action.’” In the fishing game, the same kind of action means “changing all 
efforts by a scale factor.” This is, admittedly, more complex than “taking the 
action I’d like all to take,” the thought process defining simple Kant ian equi-
librium. The efficiency result suggests that successful fishing communities 
may have discovered multiplicative Kant ian equilibrium reasoning through 
cultural evolution (see Boyd and Richerson 1985).

Now let us consider hunting economies, which use the allocation rule 
XED. Hunters fan out into the bush searching for game, and after several 
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days they return to camp, dividing the capture equally. The relevant game 
is given by:

V E E u
G E

n
Ei n i

S
i( ,..., ) (

( )
, ).1 =

At an effort allocation (E1,…,En), suppose that a hunter thinks, “I’d like 
to take a two-hour nap under that tree. But I should do this only if I would 
be happy if all hunters took a two-hour nap.” This time, the kind of action 
that the Kant ian contemplates is additive rather than multiplicative.

Proposition 3.5 Any K+ equilibrium in the hunting economy, which em-
ploys the equal-division allocation rule, is Pareto efficient (in the economic 
environment). Conversely, any Pareto-efficient equal-division allocation is a 
K+ equilibrium.

Proof. The first-order condition generated by Definition 3.4 that char-
acterizes a K+ equilibrium is:

 

d
dr

u
G E nr

n
E r E

d
dr

u
G

r

i
S

i i

r

i

=

+ =

+ + = >
0

0

0 0(
( )

, ) ,

(
(

if

EE nr
n

r E
S

i+ ≤ =













)
, ) ,0 0if

, (3.21)

where d
dr+

 denotes the right-hand derivative. This expands to:

 
u

G E
n

n u E

u
G E

n
n u

i
S

i i

i
S

i

1 2

1 2

0 0

0

⋅ ′ + = >

⋅ ′ + ≤

( )
,

( )
,

if

iif Ei =









 0

, (3.22)

which immediately reduces to MRSi ≥ MRT, with equality when Ei > 0. 
This is precisely the condition for Pareto efficiency.

The proof of the converse mimics the proof in Proposition 3.4. ■
So Kant ian reasoning resolves the tragedy of the commons in fishing 

games and the free-rider problem in hunting games with heterogeneous pref-
erences—but the kind of action that a producer must contemplate universal-
izing changes with the allocation rule. My conjecture is that there are good 
reasons that fishing economies adopt the proportional allocation rule and 
hunting economies the equal-division rule. (For instance, “each keeps his 
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catch,” giving the proportional rule, economizes on monitoring and avoids 
the necessity of an institution that redistributes the communal catch. The 
justification of the equal-division rule is more complex; perhaps it evolved as 
a kind of insurance system to ensure that nobody went hungry.) Having done 
so, societies of these types that discover the correct Kant ian optimization 
protocol will do better than ones that do not discover it, by these efficiency 
arguments. I can think of no reason that fishers might be led to think mul-
tiplicatively and hunters additively; if these communities discover the right 
kind of Kant ian counterfactual, that engenders Pareto efficiency, this would 
be due to chance—selective adaptation of random cultural mutations.

What is the relation between multiplicative, additive, and simple Kant-
ian equilibrium? We have:

Proposition 3.6 In a production game where all players have the same 
preferences u and the allocation rule X is symmetric, any positive SKE is both 
a K× and a K+ equilibrium.

Proof. Let the SKE be E*. Define the share functions θi by:

θi n S i nE E G E X E E( ,..., ) ( ) ( ,..., )1 1= .

To show that E* is a K× equilibrium, we need to show that:

 
d
dr

u rE rE G rE rE
r

i S

=

=
1

0( ( ,..., ) ( ), ) ,* * *θ  (3.23)

which reduces to:

 u E E G nE nE u Ei i
1 2 0⋅ ′ + ∇ + =( ( ,..., ) ( ) )* * * * * *θ θ iE , (3.24)

where ∇θi  is the gradient vector of θi at E* = (E*,…,E*). Because E* > 0, 
we may rewrite (3.24) as:

 − = ′ + ∇u i
u i

G nE nE
E

i i
2

1

[ ]
[ ]

( )* * *

*

θ θ iE ; (3.25)

the right-hand side of (3.25) reduces to the MRT ′G nE( )*  if:

θ θ
i

inE
E

( )
( )

* *

*
* *E

E E= ∇ =1 0and i .

The first condition is true, because, by symmetry, θi(E*) = 1/n, and the 
second condition is likewise true by symmetry, for it says that the direc-
tional derivative of θi at E* in the direction E* is zero—and this is true, 
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because θi is constant at 1/n along that path. Therefore, a positive SKE is a 
K× equilibrium.

The demonstration that an SKE is a K+ equilibrium is similar. ■
Thus, multiplicative and additive Kant ian equilibria are true generaliza-

tions of the natural concept of simple Kant ian equilibrium to the case of 
heterogeneous preferences for the two simplest, ubiquitous allocation rules 
in common-pool resource problems: division of the product in proportion 
to effort and equal division of the product.

3.3 Incentive Compatibility

Let us look more carefully at the Kant ian equilibria in the fishing and hunt-
ing economies for the special case, canonical in optimal taxation theory, in 
which workers have the same preferences over consumption and labor time 
(L), but their skills are different. Suppose that everyone has preferences over 
consumption and labor represented by a concave utility function u(x,L), 
but productivities, w, are distributed according to some distribution func-
tion F, so that utility functions expressed as functions of consumption and 
efficiency units of labor are given by:

 u x E u x
E
w

w ( , ) ( , )= . (3.26)

So, although workers share the common preferences u, the differential skills 
they possess make this a case of heterogeneous preferences when we express 
labor in efficiency units.

We can ask whether the fishing and hunting equilibria are incentive 
compatible in the sense that, at the equilibrium, utility increases with skill. 
In the production economies studied above, the condition for Pareto ef-
ficiency is that u G E ui S i

1 2 0′ + =( )  for all i. For the special case of (3.26), this 
becomes:
 ( ) ( )∀ ′ + =w u wG E uS

1 2 0 , (3.27)

where u is evaluated at the argument (x,E/w).
Example: Kant ian equilibrium in a quasi-linearity continuum economy
Assume u x L x L( , ) = − 1

2
2 , and let skill levels w be distributed according 

to a continuous distribution function F. Let G E E( ) = 2 . In the  continuum 
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economy, we replace ES with E E w dF w= ∫ ( ) ( ), and Ei with E(w). Thus, 
(3.27) becomes:

 E w
E w

w
− =1 2/ ( )

 or E w E w− =1 2 2/ ( ) . (3.28)

Integrating this equation gives:

 E E E− = =1 2
2 2

2 3/ /( )µ µand so , (3.29)

where µ2
2≡ ∫ w dF w( ) is the second moment of the real wage distribution. 

It now follows from (3.28) that E w
w

( )
( ) /=

2

2
1 3µ

. By recalling that the con-

sumption of individual w is E w
E

G E
( )

( )  in the multiplicative Kant ian equi-

librium, we can compute that w’s utility at the solution is given by:

 u w u
E w

E
G E

E w
w

wK×

= =[ ] (
( )

( ),
( )

)
( ) /

3
2

2

2
2 3µ

. (3.30)

Hence utility2 is indeed increasing in w.
Let us compute the Nash equilibrium of this fishing game. The first-

order condition for Nash equilibrium is 
d

dE
u E

G E
E

E
w

N

N(
( )

, ) = 0, or:

 2 1 2

2

( ) ( )/E
E

E w
w

N

N

N

= , (3.31)

or E w
w

E
N

N
( ) = 2 2

, which integrates to give:

 ( ) ( )/ /E EN N3 2
2 2

2 32 2= =µ µor , (3.32)

and it follows that E w
wN ( )

( ) /= 2
2

2

2
1 3µ

. Compute that utilities at the Nash 
equilibrium are given by:

 u w
w w wN[ ] ( ) (

( )
)

( )
/

/
/= − =

2

2
2

1 3

2
1 3

2 1 3
2

2
22 2

1
2

2
2

2
µ

µ
µ µ //3 . (3.33)

Comparing (3.33) with (3.30), we see that all players are strictly better off in 

the Kant ian equilibrium, because 
3
2

23> .

Let us now compute the utilities at the additive Kant ian equilibrium 
for this example at the equal-division solution. Because of the quasi-linear 
structure, the values of E(w) are the same for all Pareto-efficient allocations. 

We therefore know that E w
w

( )
( ) /=

2

2
1 3µ

 in the hunting economy. The only 
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change from the multiplicative Kant ian equilibrium is that consumption 
for all agents is G E( ) ( ) /= 2 2

1 3µ . It follows that utilities in the additive Kant-
ian equilibrium of the XED economy are given by:

 u w
wK+

= −[ ] ( )
( )

/
/2

22
1 3

2

2
2 3µ

µ
. (3.34)

The first-order condition for Nash equilibrium in the equal-division econ-

omy is 
d

dE
u G E

E
w

N( ( ˆ ), ) = 0, where ÊN is the average efficiency units of ef-

fort expended in this Nash equilibrium. This first-order condition reduces 

to 
u
w

2 0= , so all efforts are zero in the Nash equilibrium of the equal-division 

economy. From (3.34), it follows that the additive Kant ian equilibrium is 
not incentive compatible because utility is decreasing in w.

How disturbing or relevant is this? In ancient hunting economies, young 
men, who were the hunters, acquired their skills during youth and adole-
scence, when praise and respect were showered by their elders on those who 
developed high skill. Hunters in the bush had their reputations to maintain, 
so utility is incompletely represented by functions like u. In modern times, 
we think of the more radical kibbutzim in Israel, which used, more or less, 
an equal-division allocation rule. Some members with high earning power 
and who worked outside the kibbutz contributed more than others to the 
common pool of consumption goods. In the presence of a cooperative ethos, 
incentive incompatibility is not a death sentence, although we can expect 
that the cooperative ethos is more difficult to maintain if the variance in skills 
is high. Moreover, the incentive incompatible nature of the equal- division 
solution suggests that the additive Kant ian equilibrium will be harder to 
maintain than the proportional multiplicative Kant ian equilibrium.3

In the rest of this chapter, I apply the concept of Kant ian equilibrium to 
a sequence of examples.

3.4 Oligopolistic Collusion4

Consider n producers in an oligopolistic market, who face a demand curve 
D(p), where we assume that D–1 is a concave function, and where producer 
i has a convex cost function ci(y). The oligopolist game, where firms choose 
quantities, is given by the payoff functions:



S
N
L
54

Kantian Optimization in Games

54

 V y y D y y c yi n S i i i( ,..., ) ( ) ( )1 1= −− . (3.35)

Because D–1 is a decreasing function, the game so defined is strictly mono-
tone decreasing, and hence by Proposition 2.1, the multiplicative Kant ian 
equilibrium is Pareto efficient (for the community of producers).

3.5 Strikes

A group of N workers is contemplating a strike. Each worker’s strategy is the 
probability that she will join the strike, πi. If she does not join the strike, she 
scabs. Workers are of types i, with ni workers of type i, and I types of worker. 
The probability that the strike wins is p(m) where m n Ni i= ∑π / , the frac-
tion of workers who strike, and p( )⋅  is monotone increasing. A strategy pro-
file is a vector (π1,…πI),

The utilities of a striker of type i are:

Ai if the strike wins, Bi if it loses, where Ai > Bi,

and strike-breakers earn, in addition, d(m). We assume that d( )⋅  is increas-
ing, because the firm puts more value on having a worker cross the picket 
line, the more effective the strike is likely to be (large participation), and 
also because greater inducements are needed to attract scabs, the more solid 
the strike is.

The expected utility of a worker (striker or scab) at a profile π = (π1,…
πn) is:
 EU p m A p m B d mi i i i= + − + −( ) ( ( )) ( ) ( )1 1 π . (3.36)

Note that scabs enjoy the outcome of the strike, whatever it is. Because 
d is an increasing function of m, the game is monotone increasing, since 
Ai – Bi > 0, and hence a strictly positive multiplicative Kant ian equilibrium, 
if it exists, is Pareto efficient. (Any additive Kant ian equilibrium is efficient.)

We compute the condition for an interior multiplicative Kant ian equilib-
rium, which requires solving for the strategy vector (π1,…πI) that no worker-
type would like to rescale. This requires solving:

d
dr

p rm A B B r d rm
r

i i i i

=

− + + − =
1

1 0( )( ) ( ) ( )π ,
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which reduces to:

′ − + − ′ − =p m m A B d m m d mi i i i( ) ( ) ( ) ( ) ( )1 0π π  or

 ∀ ′ − = − − ′ +i p m A B d m
d m

m
i i i i( )( ) ( ) ( )

( )
1 π π . (3.37)

At the Kant ian equilibrium, the right-hand side of (3.39) must be posi-
tive. The right-hand side of (3.37) is increasing in πi, holding m fixed. It 
follows that lower equilibrium values of πi are associated with lower strike 
gains, Ai – Bi. In other words, those who will gain less from the strike are the 
most likely to scab.

Let us now suppose that the number of workers is large and ask what the 
Nash equilibrium of the game is. If an individual worker can have only a 
very small impact on the size of m, then each worker should choose πi = 0  
(refer to the payoff functions at equation (3.38)): there is no other Nash 
equilibrium.

Here is a numerical example. Let:

 p m
am m

a( )
,= <








2 2 1

1

if

otherwise
 and d m bm( ) = ; (3.38)

define ∆ = −i i iA B , ∆ = ∆∑n Ni i / , and suppose that:

 a
b
a

ii< ∆ < − ∆1 and all, . (3.39)

Note that, from (3.39), b a> ∆2 . (Multiply the ith inequality in (3.39) by ni 
and add them up.) The first-order condition (3.37) for multiplicative Kant-
ian equilibrium is 2 2am b bi i∆ = −π , if p(m) < 1; averaging this condition 
over all i allows us to solve:

m
b

b a
=

− ∆2( )
.

m is positive and less than unity because b a> ∆2 . Now the first-order  

condition gives us πi

ia
b a=

∆
− ∆

+1

2
, which is less than one for all i by (3.39). 

Finally, we must check that am2 < 1; this reduces to the inequality a < 1, 
which is true. We have found the unique positive multiplicative Kant ian 
equilibrium for this example.
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It may be possible to explain participation in strikes by positing that strik-
ing workers will impose severe costs on scabs, thus altering payoff functions 
to render it individually optimal to participate. Certainly, such penalties 
and ostracism occur in reality. The important question is whether it is the 
fear of punishment or Kant ian morality that motivates participation for most 
strikers. The language of solidarity that is ubiquitous in the labor move-
ment, especially concerning participation in militant and potentially costly 
actions, certainly suggests that workers attempt to support one another in 
their choice of the Kant ian protocol. Is this a diversion, with the real work 
being done by fear of punishment? This seems most unlikely to me.

Contrast this Kant ian analysis of strike behavior with a recent proposal by 
Salvador Barberà and Matthew O. Jackson (2016), who present a model of 
protests and revolutions. The problem is to derive a Nash equilibrium with 
positive participation, when the conventional analysis will produce a unique 
Nash equilibrium with zero participation. The authors achieve this by pro-
posing the payoff matrix for an individual i as shown in table 3.1.

θi is positive and is i’s “unhappiness with the government.” What’s impor-
tant here is that the utility achieved if the revolution succeeds depends on 
whether one participated in the protests. This is an example of the “warm 
glow” approach to explaining collective action (due to Andreoni 1990); the 
authors evidently assume that, the unhappier one is with the regime, the 
greater satisfaction one achieves from participating than not participating. 
Alternatively, one might think of the utility from participation as “expres-
sive,” as has been proposed in the theory of expressive voting (Brennan and 
Lomasky 1993). Having posited the warm glow/expressive feature, the au-
thors derive Nash equilibria with positive participation.

But I question the warm glow approach to explaining protests. I offer the 
counter suggestion that many who participate do so because they are rea-

Table 3.1 Payoff matrix in Barberà and Jackson (2016)

Success Failure

Participate θi −C

Not Participate 0 0



S
N
L

57

heterogeneous preferences

57

soning in the Kant ian manner—as in the model of strikes above. Note that, 
in the strike model, the payoff to a participating agent if the strike succeeds 
is Ai, which is less than the payoff to the agent who does not participate (if 
the strike succeeds), which is Ai + d(m). Despite this fact, there is positive 
participation in the strike when individuals maximize in the Kant ian man-
ner. (The payoff to both kinds of agent, should the strike fail, is also greater 
for the nonparticipator.) Do participators get a warm glow from participat-
ing? Surely this is often the case. But I conjecture that the warm glow is the 
consequence of having “done the right thing,” not the cause of participation.

The “expressive” explanation is somewhat different, especially in one-
off events, such as mass demonstrations. Expressing one’s opposition to the 
regime can be a motivation for action. It is harder to believe that this is the 
case for participation in a protracted protest, such as a long strike, or an 
ongoing movement (such as the civil rights movement), or a lifetime of dis-
sidence. In these cases, I think the Kant ian explanation is superior.

3.6 Lindahl Equilibrium for a Public-Good Economy

Individuals in a society have utility functions ui defined over arguments 
(y,Ei) where y is the value of a public good, Ei is i’s contribution to the pub-
lic good, and the cost function is C(y) = E. The production function G is 
the inverse of the cost function.

The payoff function of individual i is u G E Ei S i( ( ), ). The multiplicative 
Kant ian equilibrium (if it exists) is characterized by:

d
dr

u G rE rE u G E E u E
r

i S i i S S i i

=

= ′ + =
1

1 20 0( ( ), ) ( )or
,

which can be written:

 
− =

′
u

u
E
E G E

i

i

i

S S
1

2

1
( ) . (3.40)

Now 
1

′
= ′

G E
C yS( )

( ), and so adding (3.40) over all i gives:

 
1

MRS
C yi∑ = ′( ) , (3.41)

which is the Samuelson condition for efficiency in the public good economy.
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Definition 3.5 A linear cost-share equilibrium is a vector of shares 
( ,..., ) [ , ]b bn n1 0 1∈  such that bi =∑ 1, a contribution vector (E1,…,En) and a 
public good level y, which is feasible, such that:

( )( ( ) ( , ( ))∀ =i E b C y y u y b C yi i i iand maximizes .

(See Mas-Colell and Silvestre 1989.)
A linear-cost-share equilibrium is a special case of a Lindahl equilib-

rium. Suppose that the K× equilibrium characterized by (3.40) exists. De-

fine b
E
E

i
i

S= . Then the linear-cost-share equilibrium for the vector b solves:

for all i, y maximizes u y b C yi i( , ( )).

The first-order conditions for this problem are:

 for all i, u u b C yi i i
1 2 0+ ′ =( ) . (3.42)

But these equations are identical to (3.40), and so Kant ian optimization 
decentralizes the Lindahl equilibrium. Andreu Mas-Colell and Joaquim 
Silvestre (1989) prove that such an equilibrium exists, and therefore the 
multiplicative Kant ian equilibrium exists as well.

3.7 Affine Taxation in a Semi-Walrasian Economy

Consider an economy that produces a private good according to a concave 
production function G. The firm chooses its labor demand to maximize 
profits, observing the wage w per unit of efficiency labor and the price of 
output, which is unity. Individuals receive Arrow-Debreu profit shares ac-
cording to a specified vector θ = (θ1,…,θn). There is affine taxation of all 
income, at a rate t. The proceeds from taxation are distributed as a demo-
grant to the population. Utilities are ui(yi,Ei) defined on income and labor. 
Define a quasi-Walrasian additive Kant ian equilibrium to be a vector of ef-
ficiency labors E = (E1,…,En) and a wage w such that:

(1) the firm maximizes profits given w at labor demand E ES i= ∑ ; and
(2) given w, no worker would prefer to translate the vector E by any 

constant.
What does (2) mean? Changing the vector E, workers suppose, will 

change their individual wage income wEi and also the demogrant, which 
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they understand to be tG E
n

S( ) ; it will also change total profits. The myopia 

involved is that the wage is assumed to be fixed—and it would not be fixed 
if the labor supply were changed, assuming that the firm equalizes the value 
marginal product to the wage (the price of output is the numéraire).

Thus, the first-order conditions for a quasi-Walrasian additive Kant ian 
equilibrium are:

(1) w G ES= ′( )  (from profit maximization); and

( ) (( ) ( ) ( ) ( ( ) (2 1 1
0

d
dr

u t w E r t G E nr w E
r

i i i S S

=

− + + − + − +θ nnr

tG E nr
n

E r
S

i

))

( )
, )

+

+ + = 0
.

Calculate that the second condition reduces to:

u t w tG E t G E n wn ui S i S i
1 21 1 0⋅ − + ′ + − ′ −( ) + =( ) ( ) ( ) ( ( ) )θ ;

however, using w = G′, this reduces to u G ui i
1 2 0′ + = , and so the allocation 

is Pareto efficient.
Thus, additive Kant ian optimization, in the sense defined here, allows 

the polity to choose its tax rate, and then implement it efficiently in a de-
centralized way. In other words, this equilibrium solves the equity-efficiency 
trade-off, in the sense of completely separating the distributional question 
(the value of t) from efficiency.

If production is linear, then we need not inject the myopic behavior 
with respect to the wage, because the marginal rate of transformation is a 
constant independent of the labor employed.

This example is generalized in chapter 13.

3.8 A Firm with Stochastic Output5

Suppose the world has s states. In state σ, the production function of the 
firm is a concave function Gσ. The probability of state σ is pσ. Player i 
will receive a share of output equal to θi(E), independent of the state. Play-
ers’ utility functions over consumption and effort are as usual concave{ui}, 
but now we assume that these are von Neumann–Morgenstern  utility 
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functions, so each player is concerned with expected utility p uiσ

σ

σ[ ]∑ ,  

where ui[ ]σ  is the utility at the allocation to receive in state σ.

For specificity, suppose that θi
i

S

E
E

( )E = . A multiplicative Kant ian equi-

librium is defined in the usual way. Is such an equilibrium Pareto efficient? 
The condition for Pareto efficiency of an interior vector of efforts E is:

 ( )( [ ]( ) ( ) [ ]∀ ′ +( ) =∑i p u G E ui S iσ σ

σ

σ σ1 2 0. (3.43)

The necessary and sufficient condition for E’s being a multiplicative 
Kant ian equilibrium is:

 ( ) ( ( ), )∀ =
= =
∑i

d
dr

p u
E
E

G rE rE
r

i
i

S
S i

s

1 1

0σ σ

σ

, (3.44)

which, when expanded, becomes exactly (3.43). So interior multiplicative 
Kant ian equilibria are Pareto efficient in the stochastic economy.

The same result holds if we use the equal-division shares, and additive 
Kant ian equilibrium.

What happens if the share functions depend upon the state? If the prob-
lem is symmetric, then the simple Kant ian equilibrium is Pareto efficient. 
But if it is not symmetric, there is no generalization.

3.9 Gift Exchange

In a well-known paper, George Akerlof (1982) explains that in some firms, 
workers work more than a stipulated, required minimum, and firms pay 
more than the market wage, as a gift exchange.

Here is a model of Akerlof’s observation. The firm’s profit function is 
P(w,e), a concave function, increasing in the effort of workers e and also 
increasing in w, the wage, for sufficiently small w, but decreasing in w 
thereafter. We interpret the wage as the weekly income of the worker, in-
dependent of her effort e. The existence of a region in which P1 > 0 is 
explained by the fact that increasing the wage induces low turnover of 
workers by increasing the opportunity cost of quitting, which is of greater 
value to the firm than the increased cost of labor, as long as the wage is not 
too high. The worker’s utility function is u(w,e), concave, increasing in w 
and decreasing in e.
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Normal firms specify a minimal acceptable effort level em, and the equi-
librium in a normal labor-firm relationship is a Nash equilibrium in which 
w is the firm’s strategy and e is the worker’s. The unique Nash equilibrium 
in the firm-worker game is given by:

 e e P w eN
m

N
m= =, ( , )1 0. (3.45)

However, Akerlof observes that there are other firms where workers offer 
more effort than em, employers pay a wage greater than wN, and presumably 
both workers’ utility and firm profits are greater than in the normal firm. 
Akerlof explains this as a gift relationship: the workers provide a gift to the 
employer by working harder than necessary, and in return the employer of-
fers a gift to the workers of a higher than normal wage.

I will propose an alternative explanation to Akerlof’s, which is that the 
players in the game are playing a multiplicative Kant ian equilibrium. A 
multiplicative Kant ian equilibrium is a pair (w,e) such that:

 
1 1= =argmax ( , ) argmax ( , )

r r
P rw re u rw reand

. (3.46)
Notice that this is a strictly increasing monotone game: each player’s pay-
off is strictly increasing in the other player’s strategy. It follows by Proposi-
tion 3.1 that the solution, if it exists, is Pareto efficient. Typically, the Nash 
equilibrium in the game will not be Pareto efficient: so it is certainly pos-
sible that the Kant ian equilibrium Pareto dominates the Nash equilibrium, 
and the other observations made above hold—that eK > em and wK > wN. We 
cannot, however, deduce these inequalities without more structure.

Consider this example:

u w e w e P w e w w e( , ) , ( , ) ,= − = − +α β γ
2

2

where (α,β,γ) are positive numbers. Kant ian equilibrium, the solution of 
(3.46), is given by:

w e w w e= − + =α β γ, ( )1 0,
which solves to:

 

w e w

u w e P w e

K K K

K K K K

= + =

= = +

1
1

0
1

2
1

β
γ
α

α

β
γ

( ), / ,

( , ) , ( , ) (
αα

)2 . (3.47)

On the other hand, the Nash equilibrium is given by:
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w e e u w e e P w e eN N
m

N N
m

N N
m= = = − = +1 1 1

2β β
α

β
γ, , ( , ) , ( , ) .

One can compute that both players do better in the Kant ian equilibrium 
than in the Nash equilibrium if and only if:

 
1

2
1

2
1

2
βα β α

γ
α

< < +em ( ).
 

(3.48)

The wage is always greater in the Kant ian equilibrium, and effort is greater 
if and only if:

 
1

1
αβ

γ
α

( ) .+ > em  
(3.49)

Check that (3.49) is implied by (3.48). It follows that all the features of 
the observed characteristics of the normal and “gifting” firms hold precisely 
when (3.48) is true.

So there are certainly environments in which the phenomenon Akerlof 
observes is explained by Kant ian optimization. Many firms are caught in a 
noncooperative Nash equilibrium, and some have achieved cooperation, in 
the sense that the worker and employer are optimizing in the Kant ian man-
ner. Both gift and Kant ian explanations are based upon trust: for Akerlof, 
each side trusts that the other side will make a gift if it does, and in my expla-
nation, each side trusts that the other will optimize in the Kant ian manner 
if it does. It may be very difficult to decide if one explanation is better than 
the other. Indeed, the “gift” explanation may just be another way—but an 
imprecise one—of stating Kant ian optimization.

The advantage of the Kant ian approach is that it gives an exact solution 
to the game. Akerlof’s explanation is incomplete, for it does not determine 
how large the gifts will be. To do that, the utility functions of the players 
would have to be altered to include an exotic argument.

3.10 Sustainability in a Dynamic Setting

The fishing game is a very simple example of the tragedy of the commons. 
More realistically, one should examine the nature of stationary states where a 
common-pool renewable resource is exploited by a community. Here we mod-
ify slightly a model proposed by Andries Richter and Johan Grasman in 2013.
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Consider a community that exploits a renewable resource, such as a fish-
ery. At any point in time, the harvest will be proportional to the total extrac-
tion effort of the community, where the factor of proportionality is itself 
proportional to the total amount of the resource—that is:

 H t qX t E tS( ) ( ) ( )= , (3.50)

where X and ES are total supply of the resource (the fish population in the 
lake) and total effort of extraction and H is the harvest at time t. Think 
of (3.50) as follows: in unit time, an amount proportional to the total fish 
population can be extracted, qX(t)—we view qX as a measure of the density 
of the fish in the lake. We now assume that there are constant returns in ef-
fort, at least for efforts that are not too large relative to X. Formulation (3.50) 
is standard in resource economics.

The law of motion of the renewable resource is given by:

 X t X t rX t
X t
K

H t( ) ( ) ( )(
( )

) ( )+ = + − −1 1 , (3.51)

where K is the maximum possible population of fish, or the capacity con-
straint of the lake. In other words, the fish population renews itself at a 
rate that is decreasing as the resource approaches the maximum capacity. 
It follows that the stationary states, where X is constant over time, are 
given by:

 H rX
X
K

= −( )1  (3.52)

or, using (3.50):

 qE r
X
K

S = −( )1 . (3.53)

Suppose that the utility function of producer i is given by:

 u x E x Ei i( , ) = − ν 2 , (3.54)

where x is consumption of the resource and E is extraction effort. The 
community wishes to choose among possible sustainable extraction rules: 
that is, it wishes to choose a stationary state (X,ES) as defined by (3.53). As 
well as choosing the stationary state, it must choose the individual efforts 
E E Ei S iso that = ∑ . Either because they have sufficiently low discount 
rates or because they care about future generations of producers, the com-
munity limits its search to sustainable states.
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Production is carried out by individuals: thus, each keeps the resource 
he harvests. Since each producer is equally likely to extract a unit of the 
resource with the application of a unit of labor (in efficiency units), the total 
harvested resource is allocated in proportion to the efforts expended.

We examine a multiplicative Kant ian equilibrium for such a problem. 
Imagine that the community is considering a particular stationary state 
(X,ES). Suppose that everyone were to multiply his effort by a positive num-
ber ρ: then a new stationary fish population Xρ would ensue, where this 
quantity is defined by:

 q E r
X
K

X K
q E

r
S

S

ρ ρρ
ρ= − = −( ), ( )1 1or . (3.55)

It is assumed for simplicity that producers will exert the same effort at ev-
ery date, forever. Thus, they will quickly converge to a stationary state once 
the total effort is fixed. (This follows from an examination of (3.51).) Im-
plicitly, producers are maximizing a discounted sum of their period utilities, 
and we ignore the issue of transition to a stationary state. Since maximizing 
the present value of a constant stream of utilities is equivalent to maximiz-
ing the single-period utility, we need not further consider the discounted 
sum, although it is their looking into the future that motivates the fishers to 
study the stationary (sustainable) states.

Now a Kant ian equilibrium in such a situation is a vector of effort levels 
E = (E1,…,En), inducing a total effort ES, and a stationary state via (3.53), 
such that no producer would advocate changing all effort levels by any con-
stant factor, passing to the associated new stationary state. In other words, E 
has the following property:

 
( )( argmax[ ( ) ]).∀ = −i

E
E

qX E E
i

S
S i i1 2

ρ

ρρ ρν
 

(3.56)

To understand (3.56), note that at (X,ES), the amount of the resource (fish) 
that agent i gets is equal to his fraction of the total extraction time multiplied 
by the total harvest, which is qXES. So if i were to advocate multiplying all 

efforts by ρ, her new resource harvest would be 
E
E

qX E
i

S
ρρ , and her new util-

ity would be the expression in square brackets in (3.56). Thus, (3.56) is the 
condition for the effort vector’s being a multiplicative Kant ian equilibrium.

Substituting for Xρ from (3.55), the above maximization is:
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 max ( ) ( )
ρ

ρ ρ ρE q K
q E

r
Ei

S
i i1 2 2− − ν , (3.57)

which is concave in ρ, and hence we examine the first-order condition for 
the solution to (3.57) at ρ = 1, which reduces to:

 E
qK

qE
r

q KE
ri

S S

i=
− −( )1

2

2

ν
. (3.58)

Adding (3.58) over all i gives us an equation in ES, which solves to give:

 E qK
qE
r

S
S

= −Ω
2

1
2

( ), (3.59)

where Ω ≡ ∑ 1
ν i , which in turn gives:

 E
qKr

r q K
S =

+
Ω

Ω2 2( )
. (3.60)

Now the value of X follows from (3.53), and the individual effort levels are 
given by substituting ES into (3.58); they turn out to be:

 E
qK r

r q K
i

i=
+2 2ν Ω

. (3.61)

Unsurprisingly, the individual efforts are inversely proportional to the disu-
tilities of effort (ν i). They are also increasing in r, the regeneration rate of 
the resource.

We next ask about the welfare properties of this solution to the commons 
problem. If the society limits itself to sustainable stationary states, what are 
the Pareto-efficient allocations of the resource and effort? To solve this prob-
lem, we maximize the utility of an arbitrary agent i subject to placing lower 
bounds on the utilities of all other agents and restricting ourselves to sus-
tainable solutions. The problem is:

 

max ( )

) ( )

x E

j i x E k

i i i

j j j
j

−

∀ ≠ − ≥

ν

ν

2

2

subj. to

( (

j

λ j

j S

all

E E

)

=∑ ( )

j

b

qXE xS j≥ ∑ ( )a

qE r
X
K

S = −( )1 ( ),c

 (3.62)
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where I have listed Lagrangian multipliers to the right of the constraints. 
Constraints (b) and (a) are feasibility constraints, and (c) is the sustainability 
constraint. The variables that must be chosen are {xj,Ej,ES,X}. The Kuhn-
Tucker conditions for a solution to this problem are:

 

( )

( , )

( )

( , )

∂
λ

x a

x j i a

E E
b

E j i E
b

i

j
j

i i
i

j j

=
∂ ≠ =

∂ =

∂ ≠ =

1

2

2

ν

λλ j
j j

S

S

b

X qE
cr
K

E qX b cq

ν ν
=

∂ =

∂ = +

2

( )

( )

. (3.63)

It immediately follows that a = 1 = λj and E
bS = Ω
2

. From the last con-

dition, b q X c X q
E K

r

S

= − = −( ) ( ) , and so E q X q
E K

r
S

S

= −Ω
2

( ) , which 
solves to give:

 E
qXr

r q K
S =

+
Ω

Ω2 2 . (3.64)

Now, substituting into (3.64) from the last constraint in (3.62), we compute:

 E
qrK

r q K
S =

+
Ω

Ω2 2( )
. (3.65)

But this is identical to the total effort in the Kant ian equilibrium; see (3.60). 
Moreover, the individual efforts Ei are also identical to those of the Kant ian 
equilibrium: this is obvious, since we note from (3.63) that the individual 
efforts are also inversely proportional to the νi and must add up to the same 
total effort. Any allocation of the harvested resource among the producers 
generates a Pareto-efficient solution—the Kant ian equilibrium picks out 
the allocation where “each keeps his catch.”

To complete the Kuhn-Tucker analysis, we must check the sign of the 

shadow prices. c
qKE

r

S

= > 0  from the ( )∂X  condition. It remains only 

to check that b ≥ 0. Now b = q(X − c), so we need check that X ≥ c, 
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that is, rX ≥ qKES. Using constraint (c) in (3.62), this becomes E
r
q

≤?

2
,  

or 
Ω

Ω
Ω

Ω
qrK

r q K
r
q

q K
r q K2 2

12

2

2( ) ( )+
≤

+
≤or , which is true. This completes the 

argument.
Thus, multiplicative Kant ian optimization is a protocol for solving the 

problem of efficient, sustainable exploitation of a renewable resource.

3.11 Efficient Provision of the Quality of Work

The neoclassical convention is to model a worker’s well-being as an increas-
ing function of consumption and a decreasing function of work time. In 
fact, this surely undervalues the importance of meaningful work in peoples’ 
lives. Let us suppose that a worker’s utility function is u(x,E,ω), where x and 
E are consumption and efficiency units of labor expended, and ω is the 
quality of the work environment. (This might represent the speed of the as-
sembly line or the degree of worker autonomy in the labor process.) Utility 
is increasing in its first and third arguments and decreasing in the second. 
Production is a function G(ES,ω), a concave function of two variables that 
is decreasing in ω. Thus, there is a trade-off between output and the quality 
of working conditions. (Even if there is a range in which G is increasing in 
ω, we can ignore this part, because the only salient part of G’s domain is 
the part where there is a trade-off between output and working conditions.)

We suppose that an economic environment consists of workers with util-
ity functions of this kind, ui, and a production function G. A feasible alloca-
tion is a vector of consumptions x, of efforts E, and of a value ω such that:

 x G ES S≤ ( , )ω . (3.66)

The quality of working conditions is a public good, which is costly to pro-
duce (because G is decreasing in ω). Because of this, it is not surprising that 
an interior allocation is Pareto efficient exactly when:

 ( ) ( ) ( , )
( , , )
( , , )

′ ∀ = −i i G E
u x E
u x E

S
i i i

i i i1
2

1

ω ω
ω

and (( )ii G E
u x E
u x E

S
i i i

i i i′ = −∑2
3

1

( , ) (
( , , )
( , , )

)ω ω
ω

. (3.67)

The first condition is the familiar equality of the marginal rates of substitu-
tion between labor and output and the marginal rate of transformation, and 
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the second condition is the Samuelson condition for efficiency in the pres-
ence of a public good.6

Now suppose that we allocate output according to an allocation rule:

 x X E Ei i= ( ,..., )1 2 , (3.68)

for any fixed value ω. We now define:
Definition 3.6 A K× equilibrium with work quality is a feasible alloca-

tion {( , ), }x E ω  such that:

 
( )i Kgiven , is a equilibrium for the econoω E × mmy

given , no agent would prefer a
( , )

( )
u G

ii

i

E different value of ω.  (3.69)

We now stipulate that the allocation rule X is the proportional rule:

X
E
E

G Ei
i

S
S( ) ( , )E = ω .

We have:
Proposition 3.7 A strictly positive K× equilibrium with work quality, 

where output is distributed in proportion to effort expended, is Pareto efficient.
Proof. Given concavity of the utility functions and the production func-

tion, an interior K× equilibrium with a public good is characterized by two 
first-order conditions:

 
( ) ( )( ( ( , ), , ) )

( ) ( )

i i
d
dr

u
E
E

G rE rE

ii i

r

i
i

S
S i∀ =

∀

=1

0ω ω

(( ( ( , ), , ) )
d

d
u

E
E

G E Ei
i

S
S i

ω
ω ω = 0

. (3.70)

Check that condition (i) of (3.70) implies condition (i′) of (3.67). Condition 
(ii) of (3.70) says that:

( )( ( , ) )∀ ⋅ + =i u
E
E

G E ui
i

S
S i

1 2 3 0ω or
 
( )( ( , ) ).∀ = −i

E
E

G E
u
u

i

S
S

i

iω 3

1

Adding up the last set of equations over i gives condition (ii′) of (3.67). ■
Of course, the Walrasian equilibrium of an economy where the quality 

of working conditions is a public good will not be Pareto efficient.
Clearly, there is an analog to Proposition 3.7 where we use the equal-

division rule to allocate the private good and additive Kant ian equilibrium.
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3.12 Summary Thoughts

Kant ian optimization provides microfoundations for the efficient solution 
of many phenomena involving public goods and bads: in common-pool 
resource problems, collusion among oligopolists, by decentralizing Lindahl 
equilibrium, resolving the voting paradox, Akerlovian gift exchange, par-
ticipation in strikes, and the provision of an efficient level of work-place 
quality. The virtue of the approach is that it gives a precise solution to many 
games (modulo the existence question), a solution that does not depend 
upon parameterizing the role of “exotic” arguments that behavioral econ-
omists typically insert into preferences. Preferences in all the examples I 
have given are classical (self-regarding and nonexotic). With heterogeneous 
preferences, we have introduced Kant ian protocols that, mathematically, 
sound a lot like Nash optimization: we have chosen the counterfactual to 
which the agent compares the present strategy profile in a different manner 
from Nash.

As we now see that there are different varieties of Kant ian optimization in 
economies with heterogeneous agents, how might we theorize which kind 
of Kant ian optimization cooperators choose? Is there a reason that fishers 
should choose multiplicative variation and hunters additive variation? I am 
not particularly interested, however, in this question: as I will argue be-
low (see chapter 11), these kinds of Kant ian equilibrium should mainly be 
viewed, not as descriptive (positive economics), but rather as prescriptive. 
They provide instructions for how a group whose members wish to cooper-
ate can find a normatively attractive solution to its design problem.

Perhaps this is an appropriate place to expand on the morality of Kant ian 
optimization of the additive or multiplicative variety. After all, the justifica-
tion given for Method Two in section 2.1 no longer applies, because sym-
metry no longer exists. When a fisher believes she must justify an expansion 
in her own labor supply by 10 percent by asking how she would feel if others 
similarly expanded their labor supplies, she is internalizing the negative ex-
ternality that her labor expansion imposes on others (via reducing the lake’s 
productivity). As I noted earlier, she does not internalize this by contemplat-
ing how the reduction in the lake’s productivity will hurt others (that would 
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be altruism): rather, she asks how similar behavior by others would affect 
her. This approach to moral thinking has several advantages: first, it does 
not require that the optimizer know the preferences of others, and second, 
it does not require her to care about others. (Indeed, the same trick to en-
gender moral behavior is embedded in “Do unto others as you would have 
them do unto you.”) We often invoke the same mechanism in teaching our 
children not to litter: we ask the child how he would feel if others were to 
litter the way he is doing, rather than relying on his altruism to desist from 
throwing his candy wrapper on the sidewalk. Our practice with littering 
children suggests to me that appealing to the categorical imperative is more 
persuasive than appealing to altruism.

I have cited the work of Michael Tomasello (2016) and Philip Kitcher 
(2011), who propose theories for how cooperation and the morality that sup-
ports it evolved among humans over the past 400,000 years, and, in particu-
lar, among Homo sapiens in the 140,000 or so years of its existence before the 
advent of agriculture 10,000 years ago. My own feeling is that concepts of fair-
ness (and hence morality) have very much to do with symmetry. Our brains 
have evolved to focus on symmetry, to search for symmetry in situations, and 
it is not a stretch to believe that our concepts of fairness, likewise, depend 
upon symmetry. The proportional and additive deviations that characterize 
the multiplicative and additive versions of Kant ian equilibrium involve what 
are probably the two simplest mathematical conceptions of symmetric de-
viation from a given vector of efforts. It does not seem to me far-fetched to 
suppose that these forms of symmetric deviation are associated with moral 
alternatives by human minds. But why assume that others in the game are 
engaging in the same kind of thinking? This must still be induced by the 
common knowledge assumption (Tomasello’s joint intentionality) that all 
participants are thinking in the same way, as in Method Two of section 2.1.

If, after all, we accept Nash equilibrium, which models an individual as 
examining a counterfactual strategy profile where only she deviates, why not 
consider it credible that an individual consider a morally salient counter-
factual profile with a symmetric deviation?

Thus, when the game is no longer symmetric, symmetric deviations from 
an existing strategy vector may continue to appear to humans as reason-
able alternatives in a situation in which they desire to act cooperatively. 



S
N
L

71

heterogeneous preferences

71

The cooperative flavor of Kant ian optimization is that when each of us con-
siders counterfactual strategy vectors, we consider them in a common set 
(namely, the line generated by rescaling the current strategy vector in ℜ+

n),  
as opposed to Nash optimization, in which each individual has his own, 
idiosyncratic set of counterfactual strategy vectors in ℜ+

n . This is illustrated 
in fig. 3.1.

Figure 3.1 At a strategy pair ( ˆ , ˆ )E E1 2  a Nash player 1 will contemplate the 
set of counterfactual strategy profiles given by the horizontal line N1, and 
a Nash player 2 will contemplate the set of counterfactual strategy profiles 

given by the vertical line N2. But if the players are using multiplicative 
Kant ian optimization, they will each contemplate strategy profiles in the 

ray K×, and if they are using additive Kant ian optimization, they will each 
contemplate counterfactual strategy profiles in the 45° line K+. The use 
of a common set of counterfactual profiles models joint intentionality.
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3.13 Literature Notes

In Roemer and Silvestre (1993), we proved that, in economies more gen-
eral than the ones defined here, allocations exist in which consumption is 
proportional to labor expended and which are Pareto efficient. We viewed 
this is a canonical “socialist allocation”: it adjoins to the socialist principle of 
proportionality of consumption to labor, Pareto efficiency, mostly ignored 
in the socialist tradition. We dubbed this allocation a proportional solution 
(Definition 3.4). In Roemer (1996), I noted that the proportional solution 
possesses the multiplicative Kant ian property, and so named it a “Kant ian 
equilibrium.”

Joaquim Silvestre suggested varying the Kant ian protocol to “additive.” 
He noted that one advantage of additive Kant ian equilibrium is that it elim-
inates a nonefficient (multiplicative) Kant ian equilibrium in the fishing 
game, where all efforts are zero. In general, one need not specify positivity 
in additive Kant ian equilibrium to guarantee Pareto efficiency, whereas one 
does, for multiplicative Kant ian equilibrium.

The proof presented here that positive multiplicative Kant ian equilibria 
in a strictly monotone game with heterogeneous preferences is Pareto ef-
ficient (in the game) is due to Colin Stewart, who was then a Yale graduate 
student.

The presentation in this book is nonchronological. I first discovered mul-
tiplicative Kant ian equilibrium and its relation to Pareto efficiency for the 
proportional allocation rule and only much later saw the simpler idea of 
simple Kant ian equilibrium in symmetric games, to which I credit Brekke, 
Kverndokk, and Nyborg (2003).
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f o u r

Other Forms of Kant ian Optimization

4.1 A Continuum of Kant ian Equilibria

Multiplicative and additive Kant ian optimization each employ a method of 
universalizing one’s action, and as we have seen, these ways of optimizing 
implement efficient allocations for the two classical rules for allocating a 
joint product: proportionally to effort, and equally. Can other allocation 
rules be efficiently implemented in production economies with some kind 
of Kant ian optimization?

We can generalize the multiplicative and additive Kant ian optimization 
protocols as follows. Consider the function:

 ϕ× =( , )E r rE  (4.1)

defined on the domain ℜ+
2 . Let a game be defined by payoff functions {Vi} 

on strategy profiles (E1,…,En). We can define a multiplicative Kant ian equi-
librium as a profile (E1,…,En) such that:

 ( ) ( ( , ),..., ( , ))∀ × ×i V E r E r ri nϕ ϕ1 is maximized at == 1. (4.2)

Similarly, define:
 ϕ+ = + −( , )E r E r 1. (4.3)

Then an additive Kant ian equilibrium is a profile (E1,…,En) such that:

 ( ) ( ( , ),..., ( , ))∀ + +i V E r E r ri nϕ ϕ1 is maximized at == 1. (4.4)

(In this case, r can take on negative values.)
More generally:
Definition 4.1 A function ϕ( , ) :E r ℜ × ℜ → ℜ+ + such that φ(E,1) = E 

and φ is increasing and concave in r is a Kant ian variation.
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Consider the convex economic environments with production e = (u1,…
un,G) that we have been studying: denote the domain of such economic 
environments by 𝔈𝔈. The environment e becomes an economy if we append 
to it an allocation rule, which is a set of functions { : , ,..., }X i ni nℜ → ℜ =+ + 1  
such that:

∀ =
=
∑( ,..., ) ( ,..., ) ( ).E E X E E G En i n S

i

n
1 1

1

Alternatively, we may define an allocation rule as a set of output-share func-
tions θi, where X E E E E G Ei n i n S( ,..., ) ( ,..., ) ( )1 1= θ . We have studied two al-
location rules, XPr and XED. Given a pair (e,X), we have an economy with 
respect to which we can define a game whose strategies are the effort levels 
of its members. What we have shown is that the positive Kant ian equilibria 
of economies (e,XPr) with respect to the Kant ian variation φ× are Pareto effi-
cient for all e ∈ 𝔈𝔈 and that the Kant ian equilibria of economies (e,XED) with 
respect to the Kant ian variation φ+ are Pareto efficient for all e ∈ 𝔈𝔈. This 
motivates the definition:

Definition 4.2 An ordered pair (X,φ) consisting of an allocation rule 
and a Kant ian variation is an efficient Kant ian pair if the Kant ian equilibria 
with respect to the variation φ of economies (e,X) for all e ∈ 𝔈𝔈 are Pareto 
efficient in the economic environment e.

The question naturally arises: Are there any efficient Kant ian pairs other 
than the ones generating additive and multiplicative Kant ian equilibrium? 
Indeed, we will show there is a whole continuum of such pairs that span a 
set of which the two polar members are (XPr,φ×) and (XED,φ+).

Define the allocation rule Xβ for any β ∈ ∞[ , )0 :

 X E E
E

E n
G Ei n

i

S
S

β
β
β

( ,..., ) ( )1 = +
+

 (4.5)

and the Kant ian variation:
 ϕ ββ( , ) ( )E r rE r= + −1 . (4.6)

Notice that as β β→ ∞ →, ( ,..., )
( )

X E E
G E

n
n

S
1 . Let us therefore define 

ϕ ϕ∞
+=( , ) ( , )E r E r .1 Notice that for β = 0, we have the proportional alloca-

tion rule and the multiplicative Kant ian variation. We have:
Proposition 4.1 For all 0 < β ≤ ∞, ( , )Xβ βϕ  is an efficient Kant ian pair.
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Proof.
1. An effort vector E = (E1,…,En) is a Kant ian equilibrium in the econ-

omy ( ,..., , , )u u G Xn1
β  with respect to the Kant ian variation φβ if and only if:

 ( ,..., )( ( ( ( ) ),∀ = +
+

+ −
=

i n
d
dr

u
E

E n
G rE n r r

r

i
i

S
S1 1

1

β
β

β EE ri + − =( ) ) )1 0β . (4.7)

To verify that (4.7) is correct, compute that the fraction E
E n

i

S

+
+

β
β

 is invari-

ant with respect to application of the function φβ to all the effort levels. Now 
(4.7) expands to:

 u
E

E n
G E E n u Ei

i

S
S S i i

1 2 0⋅ +
+

′ + + ⋅ + =β
β

β β( )( ) ( ) , (4.8)

which reduces to:
 u G E ui S i

1 2 0′ + =( ) , (4.9)

which uses the fact that Ei + β > 0 because β > 0. This proves the claim 
for β ∈ ∞( , )0 .

2. The case β = ∞—which is K+ equilibrium—has been shown in Prop-
osition 3.6. ■

We see from the last part of step 1 of the proof why we do not require 
the restriction to positive Kant ian equilibria, for β > 0, that is required in 
Proposition 3.5.

Proposition 4.1 demonstrates the existence of a continuum of effi-
cient Kant ian pairs spanning economies from fishing (β = 0) to hunting 
(β = ∞).2 What do these allocation rules Xβ look like? Let’s write:

 E
E n

E
E n

i

S

i

S

+
+

= + −β
β

λ λ( )1 , (4.10)

and compute that its solution λ is:

 λ
β

* =
+

E
E n

S

S
. (4.11)

λ* is independent of i, so (4.11) implies that:

 ( ,..., ) ( ,..., ) ( ) ( )
(* *∀ = = + −i n X E E

E
E

G E
Gi n

i

S
S1 11

β λ λ EE
n

S ) . (4.12)

We can describe these equilibrium allocations as follows. They are Pareto 
efficient: a fraction λ* of the product is divided in proportion to effort, while 
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the rest is equally divided among the participants. The value of λ* is endog-
enous—it depends upon the vector E. We do know that as β travels from 
zero to infinity, λ* travels from one to zero. But we cannot specify a priori a 
particular convex combination λ we wish to implement and immediately 
choose the right β. That is to say, the mapping from λ to β is complicated, 

depending on the equilibrium value of ES (that is, β λ
λ

= −ES( )1
). Indeed, 

these rules have appeared quite often in axiomatic resource-allocation 
analysis (see Moulin 1987, Ju, Miyagama, and Sakai 2007, Chambers and 
Moreno-Ternero 2017, and Thomson 2015).

Indeed, we can extend Proposition 4.1 to the case of negative values of β:
Proposition 4.2 For any β ≤ 0, let (E1,…,En) be a Kant ian equilibrium 

of a production economy using the allocation rule Xβ, with respect to the 
Kant ian variation φβ, such that for all i, Ei + β ≠ 0. Then the allocation is 
Pareto efficient.

I have separated this case out rather than including it in Proposition 4.1 
because, as we will show in chapter 7, β−Kant ian (that is, Kβ) equilibria for 
the production economies indeed exist for all β ≥ 0, but this is not true for 
all β < 0. The proof of Proposition 4.2 is identical to the proof of Proposi-
tion 4.1.

An example will be useful to illustrate. Let

n G E aE
b

E u x E x E u x E x E= = − = − = −2
2 2 2

2 1 1 2 2 2, ( ) , ( , ) , ( , )
α α 22 ,  

α α1 2 0> > .
The equations for a Kβ equilibrium are:

 

α
α

β
β

β

1 1

2 2

1
1

2
2

2

E a bE

E a bE

x
E

E
G E x

E
E

S

S

S
S

S

= −
= −

= +
+

= +
( ),

++ 2β
G ES( ).

 (4.13)

In addition, it is necessary that either Ei + β > 0 for both i or Ei + β < 0 
for both i—otherwise, one output share would be negative. One can solve 
the two linear equations in (4.13) for the {Ei}:

E
a

b
i ji j=

+ +
≠

α
α α α α1 2 1 2( )

, .
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We have two cases where Kβ equilibria exist:

Case 1. Ei + >β 0 or β > −max( )Ei .

In this case, β α
α α α α

> −
+ +

=a
b

2

1 2 1 2
2( )

ν .

Case 2. E Ei i+ < < −β β0 or min( ).

In this case, β α
α α α α

< −
+ +

=a
b

1

1 2 1 2
1( )

ν .

Note ν ν1 2< . Thus, Kβ equilibria for this quasi-linear economy exist for 
β ∈ −∞ ∪ ∞( , ) ( , )ν ν1 2  . For β ∈( , )ν ν1 2  there are no Kβ equilibria.

There is a geometric representation of the family of Kant ian variations 
φβ: return to fig. 3.1. The common set of counterfactual strategy profiles 
that players consider if they are using the optimization protocol φβ, for some 
0 < β < ∞, is a straight line through the point ( ˆ , ˆ )E E1 2  lying in the cone 
generated by the lines K+ and K×.

I do not think there is any practical application of Kant ian optimization 
for the rules given by 0 < β < ∞ or for the rules with negative β. The ways 
of thinking required by the variations φβ in these cases are too complicated. 
These results are of theoretical interest, however, because of Proposition 4.3 
and Corollary 4.4 below.

We now show that the only allocation rules that can be efficiently imple-
mented on the domain 𝔈𝔈 by any Kant ian variation are the rules Xβ. Let φ 
be any differentiable Kant ian variation. Define the two first partial deriva-
tives of φ:

′ ≡ =ϕ ϕ ϕ ϕ
( , )

( , )
, ( , )

( , )
.E r

d E r
dr

E r
d E r

dE1

We have:
Proposition 4.3 Let φ be any differentiable Kant ian variation that is 

strictly increasing in r, let θ be any differentiable share rule depending only 
on the effort vector E, and suppose that (θ,φ) is an efficient Kant ian pair for 
positive vectors E.

Then:

 ( , )( ( ) )∀ = +
+

i E
E

E n
i

i

Sθ β
β

E  (4.14)
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for some β ∈ℜ .
Proof.
1. E > 0 is a Kφ equilibrium for the economy (u,G,θ,n) if and only if:

 ( ) ( ) ( ) ( ) ( ( , )) ( )∀ ⋅ ′ ′ + ∇ ′( ∑i u G E E G Ei i S j i S
1 1 1θ ϕ θ ϕE Ei )) +

′ =u Ei i
2 1 0ϕ ( , ) ,

 (4.15)

where ′ϕ ( , )E 1  is the n-vector whose jth component is ′ϕ ( , )Ej 1 .
2. Therefore, if (θ,φ) is an efficient Kant ian pair, it must be the case that 

(4.15) reduces to:
 ( )( ( ) )∀ ′ + =i u G E ui S i

1 2 0 , (4.16)
which implies that:

 ( ( ) ( , ) ( , ), ( ) (a E E bi j i i) and (θ ϕ ϕ θ ϕE ′ = ′ ∇ ⋅ ′∑ 1 1 EE, )) ,1 0=  (4.17)

two equations that are identities on ℜ++. Why must (4.17) be true for any 
E ∈ℜ++

n ? Because for any positive effort vector, one can produce an envi-
ronment ( ,..., , )u u Gn1 ∈ 𝔈𝔈 such that (4.15) holds at E. To do this, pick any 
concave production function G; then pick ui such that its marginal rate of 
substitution at ( ( ) ( ), )θi S iG E EE  is given by the ratio of the coefficients of 
u ui i

1 2and  in (4.15). Then E will be a Kφ equilibrium for that environment.
3. Since φ is strictly increasing in r, ′ >ϕ ( , ) ,Ei 1 0  for all i, and it immedi-

ately follows from (4.17) part (a) that:

 θ ϕ
ϕ

i
i

j

E
E

( )
( , )

( , )
E = ′

′∑
1

1
. (4.18)

4. From (4.18), compute that:

for j i
E

E Ei

j

i j

≠ ∂
∂

= − ′ ′
′

,
( , ) ( , )
( ( , ) )

,
θ ϕ ϕ

ϕ
1 1

1
1

2E i11
∂
∂

= − ′ ′ + ′ ′θ ϕ ϕ ϕ ϕi

i

i i

E
E E( , ) ( , ) ( ( , ) )1 1 11 E i11 11

2

1
1

( , )
( ( , ) )

,
Ei

′ϕ E i11

giving us the gradient vector ∇θi( )E . Using the fact that ′ >ϕ ( , )Ej 1 0 for all 
j, calculate that:

 
(∇ ⋅ ′ = ⇔

′ ′ = ′ ′∑
θ ϕ
ϕ ϕ ϕ

i

j

j j iE E E

( , ))

( , ) ( , ) ( , )(

E 1 0

1 1 11 1 ϕϕ ( , ) )E 1 ⋅11  (4.19)
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From (4.17) part (b), it therefore follows that the statement to the right of 
the equivalence sign in (4.19) is true, and this implies that ′ϕ1 1( , )Ei  is a posi-
tive constant k, independent of i. But since E can be any interior vector in 
ℜ++

n , it follows that ′ϕ1 1( , )E  is equal to k for all E ∈ℜ++ , because we can 
vary the vector E in a single component, always maintaining the validity of 
(4.19). Integrating with respect to E, we have ′ = +ϕ ( , ) .E kE b1

5. Therefore, again invoking (4.18), we have θi
i

S

kE b
kE nb

( )E = +
+

. There-

fore, θ is the Xβ allocation rule with β = b
k

, as was to be proved. If k = 0, we 
have the equal-division rule, or θ∞. ■

Consider the Kant ian variations studied in section 4.1: ϕβ( , )E r rE=
+ −β( )r 1 . We have ϕ ββ

′ = +( , )E r E , and so it follows immediately that the 
allocation rule Xβ is in fact the rule given by (4.18). We summarize Proposi-
tions 4.1, 4.2, and 4.3 with:

Corollary 4.4 Let {θi} be a differentiable allocation rule where the shares 
θi depend only on the effort vector E. Then there is a Kant ian variation φ that 

implements {θi} efficiently on E if and only if θ β
β

i
i

S

E
E n

( )E = +
+

, some β ∈ℜ .

Thus, the allocation rules that can be implemented on our domain of 
economic environments are exactly the mixtures of equal division and pro-
portional division, which are the two classical rules of cooperative societies.

4.2 Kant ian Variations in Abstract Games

If we look at abstract monotone games, the relation between Kant ian equi-
libria and Pareto efficiency holds for any Kant ian variation:

Proposition 4.5 Let V = {Vi} be a strictly monotone game. Let φ be any 
Kant ian variation and let E* * *( ,..., )= E E n1  be a Kant ian equilibrium with 
respect to the Kant ian variation φ such that ϕ( , )*E i ⋅  is strictly increasing and 
maps onto ℜ+ for all i. Then E*is Pareto efficient in the game.

Proof. The proof applies the same technique as the proof of Proposi-
tion 3.1. We assume that the game is monotone increasing.

Let the game V be strictly increasing. Suppose that the claim were false; 
let E = (E1,…,En) Pareto dominate E*. Because ϕ( , )*E i ⋅  maps onto ℜ+ for 
each i, there is a value ri such that E E ri i i= ϕ( , )* . Let ˆ maxr r

i

i= . It cannot 
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be that r̂ r i=  for all i, for if that were so, then some i would surely prefer to 
rescale E* to ϕ( , ˆ)*E r , contradicting the assumption that E* is a φ− Kant ian 
equilibrium. Let j be a player such that r̂ r j= . Then V r Vj j( ( , ˆ)) ( )*ϕ E E>  be-
cause Vj is strictly increasing in the components i ≠ j, and ϕ( , ˆ)*E Er ≥ . This 
uses the fact that ϕ( , )*E i ⋅  is strictly increasing for all i. But V Vj j( ) ( )*E E≥ , 
because E = (E1,…,En) Pareto dominates E*, and so V r Vj j( ( , ˆ)) ( )* *ϕ E E> , 
which contradicts the fact that E* is a φ− Kant ian equilibrium. ■

In particular, Kβ equilibria in monotone games are Pareto efficient (in 
the game) for all positive β.

4.3 Final Comment

I stress that I see no application for the Kant ian optimization protocols Kβ 
for 0 < β < ∞ or for β < 0; it stretches the imagination to think of people 
optimizing in these complicated ways. What’s interesting is that an alloca-
tion rule can be implemented efficiently by some kind of Kant ian optimi-
zation if and only if it is a mixture of equal division and proportional divi-
sion.3 Because the equal-division and proportional share rules are the oldest 
conceptions of cooperative distribution of a joint product, this fact should 
reinforce my claim that Kant ian optimization is a cooperative optimiza-
tion protocol. And to reiterate one of my themes, no altruism is necessary 
to implement these share rules in a decentralized way: cooperation in the 
Kant ian sense suffices.
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Altruism

In this chapter, we study the nature of Kant ian equilibria when individu-
als are altruistic. We will restrict ourselves to examining multiplicative 

Kant ian equilibria in economies (e,XPr) where e is an environment in the 
convex domain 𝔈𝔈. The results, however, generalize to the kinds of Kant ian 
equilibria we have discussed in chapter 4: that is, Kβ equilibria economies 
(e,Kβ) where the Kant ian variation is φβ, β ∈ ∞[ , ]0 .

5.1 Altruistic Preferences and Pareto Efficiency

We will now assume, for the first time, that individuals have altruistic prefer-
ences of the form:

 U u x E S u x E u x Ei i i i i n n n( , ) ( , ) ( ( , ),..., ( , ))x E = + α 1 1 1 , (5.1)

where (x,E) is the entire allocation of consumptions and efforts, S is a 
 Bergson-Samuelson social welfare function (which is concave, differentia-
ble, and increasing in its arguments), and αi ≥ 0. If αi = 0, the individual is 
self-interested, and if αi = ∞, she is a pure altruist, caring only about social 
welfare.

We begin by characterizing what the Pareto-efficient allocations will be 
in economies with the “all-encompassing preferences Ui” and a concave 
production function G.

Proposition 5.1 Suppose that αi = α for all i. An interior allocation (x,E) 
is Pareto efficient in the economy ({Ui},G) if and only if:

 ( )
( , )
( , )

( )∀ − = ′i
u x E
u x E

G E
i i i

i i i
S2

1

, and (5.2)
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 α ≤ ⋅ −






−
−

∑∑max ( ( )i
i

i
k

k
kk

u S u S1 1
1

1

, (5.3)

where Sk is the kth partial derivative of S. All functions are evaluated at the 
allocation (x,E).1

The first condition (5.2) simply says that the allocation is Pareto efficient 
in the economy with self-interested preferences, when α = 0. Clearly, this is 
a necessary condition for efficiency in the economy with α > 0. For suppose 
that the allocation were not efficient in the self-interested economy. Then 
find a Pareto-dominating allocation. Notice that S must increase, because 
it is an increasing function of the utilities of all members of the society. 
Therefore, Ui will increase for everyone—strictly, if S is strictly increasing 
in its arguments. Therefore, the allocation was not Pareto efficient in the 
altruistic economy, a contradiction.

Because of altruism, if an allocation gives individuals very unequal utili-
ties and S is strictly concave, then even if it is efficient in the self-interested 
economy (that is, if (5.2) holds), it will fail to be efficient in the α− economy, 
if α is sufficiently large, because everyone would prefer a redistribution that 
increases social welfare, even at the cost of a reduction in one’s own per-
sonal utility. This is the consideration that condition (5.3) formalizes.

Proof. To characterize Pareto efficiency in the economic environment 
(u,G,n,α), we solve the program:

max ( , ) ( ( , ),..., ( , ))u x E S u x E u x En n n1 1 1 1 1 1+ α
subject to

x G E

j u x E S u x E

j S

j j j

≤

≥ +

∑ ( ) ( )

: ( , ) ( ( , ),...,

ρ

α2 1 1 1 uu x E kn n n j j( , )) ( ).≥ λ

The Kuhn-Tucker conditions are, letting λ1 = 1:

 
( )( )

(

∀ + =

∀

j u S uj j
j

jλ α ρ1 1Λ

jj u S u G Ej j
j

j S)( ( ) )λ α ρ2 2+ = − ′Λ , (5.4)

where Λ = ∑λ j. Substituting the first of these equations into the second 
gives:
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for all j G u u Sj j j
j( )( )′ + + =1 2 0λ α Λ ,

and so:
 ′ + =G u u jj j

1 2 0 for all , (5.5)

since the second term is positive. (Recall that Sj > 0.) Equation (5.5) says 
that MRSj = MRT for all agents j.

Now (5.4) implies that λ α ρj
j jS

u
+ =Λ

1

. Adding up these equations over 
j and solving for Λ gives:

Λ = ≡
+

∑

∑
ρ

α
A A

u

S

j
j

j
j

where

1

1

1 .

It follows that u S A1
1

11( ) /+ =α Λ Λ , and so we solve:

Λ =
−
u

A u S
1
1

1
1

11/
.

α

By substituting this value into the other equations, we compute that:

λ α
j

j jAu
S

Λ
= −1

1

.

Consequently, our KT nonnegativity condition is that:

for all j:
1

1Au Sj j

≥ α.

Now substitute the expression for A and solve for α, giving:

for all j:1
1

1
1

≥ −




∑∑α u S

u
Sj

j k k
kk

.

If at least one of the terms in parentheses is positive, then this condition is 
equivalent to:
 α ≤

−




∑∑

1
1

1
1

max u S
u

Sj
j k k

kk
j

. (5.6)

Suppose to the contrary that the parenthetical terms are all nonpositive. 
This means that:
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for all j:
S

S

u

u

j

k

j

k∑ ∑
≤ 1

1

1

1

/

/
.

This inequality is of the form 
a

a

b

b

j

k

j

k∑ ∑
≤  where all a’s and b’s are positive. 

It follows that all the inequalities are equalities; for if one is strict, both sums 

cannot add to one. Therefore, in this case we have u S
u

Sj
j k k

kk
1

1

1
0−







=∑∑  

for all j, and hence (5.6) is true since the right-hand side is infinite.
Therefore, an interior allocation is Pareto efficient if and only if condi-

tions (5.5) and (5.6) hold. ■
Define PE(α;u,G,S) as the set of Pareto-efficient allocations when the 

economic environment is (u,G,S) and α is the common altruistic param-
eter, which we will abbreviate as PE(α) when there is no possibility of con-
fusion. Notice that as α increases, condition (5.3) becomes increasingly re-
strictive. It follows that the sets PE(α) are nested; that is:

 α α α α< ′ ⇒ ′ ⊆PE PE( ) ( ). (5.7)

It therefore follows that PE PE( ) ( )∞ = ≥∩α α0 . Typically, in the purely altru-
istic economy, where α = ∞, there will be a unique allocation maximiz-
ing social welfare—indeed, this must be the case if S is strictly concave. 
Therefore, the set of Pareto-efficient points shrinks to a single point as α 
increases when S is strictly concave. The intuition is clear. If everyone cares 
only about social welfare, then any allocation that does not maximize social 
welfare can be improved upon, from the viewpoint of each individual, by 
moving to the allocation that does maximize social welfare.

To get more intuition about condition (5.3), consider the case of a quasi-
linear economy, where u x E x h Ei i( , ) ( )= − . Then ui

1 1≡ . Let α → ∞. Then 
condition (5.3) becomes:

 ( )∀ ≤ ≤∑ ∑i nS S S
n

Si k
k

i k
k

or
1

. (5.8)

Summing the last set of inequalities over i gives S Si k
ki

≤ ∑∑ . But this last 

expression must be an equality. It therefore follows that S
n

Si k
k

= ∑1  for all i,  
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which is to say that for all ( , ),i j S Si j= . If S is an anonymous strictly con-
cave social welfare function,2 this implies that:

 ( , ) ( , ) ( , )∀ =i j u x E u x Ei i i j j j . (5.9)
We have proved:

Proposition 5.2 If S is an anonymous strictly concave social welfare 
function and the individual utility functions are quasi-linear, then the only 
Pareto-efficient point in the purely altruistic economy equalizes all individual 
utilities.

5.2 Kant ian Equilibrium and Efficiency with Altruism

We fix the allocation rule X Pr. The first remark is: There may be no Pareto-
efficient allocations in (u,G,α,X Pr) that can be implemented with the rule 
XPr. Suppose that α is very large —say, infinity. Then the unique Pareto-
efficient allocation in the economic environment (u,G,∞) is the one that 
maximizes social welfare. But this allocation may not (in general, it will not) 
be a proportional allocation. Consider the quasi-linear example of Proposi-
tion 5.2. If S is strictly concave and anonymous, the unique maximizer of 
the social welfare function (and therefore the unique Pareto-efficient point 
in this economy) is the one which maximizes the surplus (this determines 
the effort vector) and distributes output to equalize utilities. This alloca-
tion will only, by coincidence, be a proportional allocation. It therefore fol-
lows that we cannot expect the Kant ian equilibrium of economies (u,G, 
α,X Pr) to be  Pareto efficient (always, with respect to the all- encompassing 
preferences Ui).

Denote the set of K× equilibria for the economy (u,G,α,X Pr) by K×(α,X Pr). 
We have:

Proposition 5.33 For all α ≥ 0, K X K X× ×=( , ) ( , )Pr Prα 0 .
Proposition 5.3 says that the Kant ian equilibria for an economy with a 

positive degree of altruism, with respect to an allocation rule, are identical to 
the Kant ian equilibria for the associated economy with purely self-regarding 
preferences. Indeed, the proposition is more general than stated: it is easy to 
check that different agents can have different values of the altruistic param-
eter αi, and the proof goes through.
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Proof. An allocation (x,E) is a K× equilibrium for the economy 
(u,G,α,X Pr) if and only if:

 ( )

( ( ), )

( ( ( ),∀

+

=

i
d
dr

u
E
E

G rE rE

S u
E
E

G rE r
r

i
i

S
S i

S
S

1

1
1

α EE

u
E
E

G rE rEn
n

S
S n

1),...,

( ( ), ))























= 00 . (5.10)

Denote 
d
dr

u
E
E

G rE rE D u
r

i
i

S
S i

r
i

=

≡
1

( ( ), ) . Then (5.10) can be written:

 ( )∀ + ⋅ =∑i D u S D ur
i

k r
k

k

α 0 , (5.11)

from which it follows that for all i, D u cr
i = , a constant over i. Substituting 

this constant into (5.11), we have:

c c Sk
k

+ =∑α 0.

Since Sj
k

>∑ 0 , it immediately follows that c = 0. But this says that D ur
i = 0  

for all i, which is exactly the condition that the allocation is a K× equilib-
rium in the economy (u,G,α,X Pr), proving the claim. ■

The important consequence of Proposition 5.3 is that Kant ian equilibria 
of economies with and without altruism are observationally equivalent. If 
a community has learned to cooperate in the sense of employing Kant ian 
optimization, we cannot tell by observing the equilibrium whether its mem-
bers hold altruistic preferences or not—at least, with altruism modeled in 
this way. Their altruism has no impact on what happens in the economy 
at equilibrium. Although Kant ian reasoning can deal quite effectively with 
many kinds of externality (such as the tragedy of the commons, and so on), 
it has no bite in addressing altruism. This result does not depend upon the 
number of individuals being large: indeed, it holds for economies with two 
people.
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5.3 Review

If members of a community are altruistic toward one another, and if each 
is applying the Kant ian protocol, the observed outcome is observationally 
equivalent to what it would be if each had self-regarding preferences. In this 
sense, altruism is a gratuitous assumption, which does not appear to have 
much impact if cooperation is already present. Of course, we cannot expect 
this result to generalize to other ways of modeling altruism: here, we have 
taken the traditional approach of appending a social welfare function to 
each individual’s self-interested utility function.

Because of this result, it follows that Kant ian equilibria in the presence 
of altruism will not in general be Pareto efficient (with respect to the al-
truistic preferences)—Kant ian optimization will not take into account the 
consumption externalities in agents’ preferences.

One should not read too much into Proposition 5.3. The relation be-
tween altruism and cooperation in the evolution of our species is another 
question. Tomasello (2016) argues that cooperation with nonkin may have 
been induced by altruism in the family. Bowles and Gintis (2011) argue that 
altruism explains the participation, in hunter-gatherer societies, of young 
men in battles against competing groups. Perhaps the above proposition has 
some bearing on these issues, as it shows that cooperation (viewed as Kant-
ian optimization) cannot address the externality due to altruism. One can-
not infer from this, however, that altruism is inactive in reality, or that altru-
ism and cooperation are unrelated. The essential point here is that Kant ian 
optimization is a way that efficiency can be achieved in cooperative settings; 
it does not, however, appear to solve the inefficiencies due to the consump-
tion externalities typical of altruism.
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s i x

Is Kant ian Optimization Really Nash 
Optimization under Another Guise?

6.1 Maximizing Total Payoff versus Kant ian Optimization

Is it the case that the Kant ian equilibrium of a production game where players 
have traditional self-interested preferences is indeed the Nash equilibrium of 
a game whose players have extended preferences defined on the entire alloca-
tion? For most of this chapter, I will work with the economic environments 
with production 𝔈𝔈 studied in chapter 3. Indeed, I will assume that the al-
location rule XPr is in place and that the Kant ian protocol that players use is 
K×. Thus, any positive Kant ian equilibrium of such an economy is Pareto 
efficient.

One who is skeptical about the novelty of Kant ian optimization may pose 
the italicized question above. For if the answer to the question were affirma-
tive, then one could say that players in the game were in fact optimizing 
in the Nash manner, but using preferences with (what I’ve called) exotic 
arguments. In fact, were the answer to the question affirmative, and the 
extended preferences had a “nice” interpretation, this would provide a jus-
tification of what I’ve characterized as the approach of behavioral econom-
ics—namely, to deduce cooperation as following from Nash optimization 
with extended preferences.

There is an almost trivial response to the posed question. Suppose that 
we have a convex economy (u1,u2,G, XPr) in 𝔈𝔈 and its Pareto-efficient mul-
tiplicative Kant ian equilibrium, E E1 2,( ). Because the utility possibilities 
set is convex, the utilities at the Kant ian allocation, u u1 2,( ), lie on the 
boundary of that set and can be supported by a tangent line of the form 
au a u k1 21+ −( ) = , some a ∈( )0 1, . Define
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U E E au
E
E

G E E a u
E
E

G E Es
S

S
S1 2 1

1
1 2

2
21, ( ( ), ) ( ( ),( ) = + −( ) ))

,
and consider the game where each player maximizes the function U with 
respect to his or her strategy. Then E E1 2,( ) is a Nash equilibrium of this 
game. The proof is immediate. Given that the first player plays E1, the sec-
ond player maximizes U by playing E2, for by definition of the supporting 
tangent, there is no effort level for the second player that can achieve a 
higher value of U. This concludes the proof.

Another way of phrasing this result is that, in the modified produc-
tion economy, each player is maximizing the social welfare function 
V u u au a ua 1 2 1 21,( ) = + −( ) .

This example, however, shows that the question in the first paragraph 
above is not sufficiently nuanced. To rephrase that question: The challenge 
is whether Kant ian equilibrium can be viewed as a Nash equilibrium of 
a game with extended preferences, which, it could be credibly argued, the 
players are in fact playing. This cannot be the case just described—for how 
would the players come to coordinate on just that value of a defining the 
function V that works? I assert that there is no way. In the words I used in the 
second paragraph of this chapter, the function Va is not “nice.”

What we must ask is whether there is a natural transformation of pref-
erences (u1,u2) into preferences (V1,V2), where each Vi is defined on the 
entire allocation, such that the Kant ian equilibrium of (u1,u2,G, X Pr) is a 
Nash equilibrium of (V1,V2,G,XPr). Let us, therefore, rephrase the “Nash 
challenge” as follows:

Is it the case that the Kant ian equilibrium of a production 
game(u1,u2,G,XPr) , where players have traditional self-interested 
preferences, is indeed the Nash equilibrium of a production 
game (V1,V2,G,XPr) where the preferences V1,V2 are defined over 
the entire allocation, and are derived from u1,u2 in a natural way?

It is only if the answer to this question is affirmative that the “Nash chal-
lenge” is powerful.

I begin by examining two cases in which the answer to the question 
posed is easily seen to be affirmative. The first case is when players have 
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quasi-linear preferences; thus u x E x h Ei i i i i i,( ) = − ( )  where {hi} are convex 
functions. Let us suppose that n = 2 to keep things simple. We modify 
the players’ utility functions as follows. Both players will have the same ex-
tended utility function V given by:

 V u u u u1 2 1 2,( ) = + . (6.1)

It is important to realize that in (6.1), each player has preferences over the 
whole allocation (x1,E1,x2,E2). Thus, we should write out (6.1) in full:

 V u x E u x E u x E u x E1 1 1 2 2 2 1 1 1 2 2 2, , , , ,( ) ( )( ) = ( ) + ( ). (6.2)

Formally, the composition V u�  maps ℜ → ℜ+
4 .

Let us write the payoff functions of the game where both players have the 
utility function V, where the strategies are effort levels:

 ˆ ( , ) ( ) ( ) ( ) ( )V E E
E
E

G E h E
E
E

G E h ES
S

S
S1 2

1
1 1

2
2 2= − + − ; (6.3)

here, we have just used the proportional allocation rule and substituted 
into (6.3). Although the players have the same preferences V̂ , the game 
is not symmetric with respect to the strategies of the two players. As always, 
player one controls E1 and player two controls E2. Now we look at the Nash 
equilibrium of this new game. The necessary first-order conditions for Nash 
equilibrium are:

 ∂
∂

= ∂
∂

=
ˆ ˆV

E
V
E1 20 0and . (6.4)

Compute that these conditions are exactly:

 ′( ) = ( )′ ( ) ′( ) = ( )′ ( )G E h E E h ES S1 1 2 2andG . (6.5)

But these are precisely the conditions for Pareto efficiency! Therefore, the 
Nash equilibrium of the game is a proportional allocation that is Pareto ef-
ficient: this is precisely the multiplicative Kant ian equilibrium of the game 
with players whose preferences are given by (u1,u2).

In other words, the Kant ian equilibrium of the game with self-interested 
(quasi-linear) preferences is exactly the Nash equilibrium of the game with 
players each of whom is concerned with maximizing the sum of utilities of 
the players. The two games are, in a word, observationally equivalent. In-
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deed, the utility function V defined by (6.1) does qualify as natural. There 
is, however, one drawback to this example: it requires a cardinal representa-
tion of the utility functions. For instance, if we used the utility function 2u1 
for the first player, and continue to use u2 for the second player, and define 
the extended preferences as V u u= +2 1 2, it is no longer the case that the 
Nash equilibrium of the new game is Pareto efficient. Indeed, with this V, 
the first-order condition for Nash equilibrium for the first player is:

 
G E

E
E
E

G E
E
E

h E
S

S
S

S

( ) 



 + ′( ) +





 =( )′ ( )

2

3

1
1 11 . (6.6)

The second case I propose is when all players have the same utility func-
tion u. Again, we define the extended preferences as the “altruistic” ones:

 V u u u u,( ) = [ ] + [ ]1 2 , (6.7)

where the notation u[i] means the utility of player i at the allocation (xi,Ei) 
that i receives. The players now have the symmetric payoff function:

 ˆ , ( ( ), ) ( ( ), )V E E u
E
E

G E E u
E
E

G E ES
S

S
S1 2

1
1

2
2( ) = + . (6.8)

The condition for Nash equilibrium is again (6.4). These conditions com-
pute to:
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E

G E
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E
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u u
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2

2

2 0
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[ ] ′

E
E

G E
G E

E

u
E
E

G E

S
S

S

S

S

( )

( ( SS
S

S

S

S

S
S

G E
E

G E
E

u u
E
E

G E

) )

(

−
( )

+
( )





+ [ ] + [ ] ′2 1

1

2 1 (( ) −
( )



 =G E

E

S

S ) 0

. (6.9)

Let us look for a symmetric solution to equation (6.9). At such an allocation, 
we have u u u u1 1 2 21 2 1 2[ ] = [ ] [ ] = [ ]and . Then the first equation becomes:

 
u

E
E

G E
G E

E
u

G E
E

u
S

S
S

S

S

S

S1 1 21 1 1[ ] ′ −




 + [ ] +( ( )

( ) ( ) [[ ] =

[ ] ′ + [ ] =

0

1 1 01 2or u G E uS( )
, (6.10)
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and the second equation similarly reduces to u G E uS
1 22 2 0[ ] ′( ) + [ ] = . But 

these two equations simply say that the marginal rate of transformation is 
equal to the marginal rate of substitution for both players. In other words, 
the multiplicative Kant ian equilibrium (which is a symmetric, proportional 
allocation that is Pareto efficient) solves (6.7) and is therefore a Nash equi-
librium of the game played by players with extended preferences.

Again, the same drawback applies: we must use cardinal utility functions 
that are identical for the two players for this conclusion to hold. We have 
shown:

Proposition 6.1
a. Suppose that players have quasi-linear utility functions of the form 

u x L x h Ei i i i i i,( ) = − ( ), or suppose that all players have the same concave 
utility function u. Consider the new game where each player maximizes the 
sum of all the (cardinal) utility functions of players in the original game. 
Then there is a Nash equilibrium of the game with extended preferences that 
is the K× equilibrium of the original game (with self-interested preferences).

b. If we substitute K+ for K× in statement a, the statement is still true.
Proof of part b replicates the proof given for part a.1

It turns out that the result with identical utility functions extends to many 
other games. In the next proposition, we consider games in which player i’s 
payoff function is P(Ei,ES) for some function P. This covers symmetric 
 public-good games (so-called trust games in lab experiments) and all two-
person symmetric games.

Proposition 6.2 Consider a symmetric n-player game where the payoff of 
player i is P(Ei,ES), where P is a concave function and the strategy space is convex 
(an interval). Define the extended preferences V E E E P E En i S

i

1 2, ,..., ,( ) = ( )∑ .  

If E* = (E*,…,E*) is an SKE of the game where players’ payoff functions are 
P(Ei,ES), then:

(i) E* maximizes V over all strategy profiles, and
(ii) E* is an NE of the game where each player’s payoff function is V.
It should be noted that the assumption of Proposition 6.2 that the strategy 

space is convex (an interval) is key. One can construct games with discrete 
strategy spaces for which the total-payoff-maximizing strategy profile is not 
the simple Kant ian equilibrium of the game.
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Proof. If E* = (E*,…,E*) is the SKE of the first game, then:

 E P E nE* ,maximizes ( ). (6.11)

Suppose that the vector E* = (E*,…,E*) does not maximize V. Then there 
exists a vector E = (E1,…,En) such that:

 P E E nP E nE
n

P E E P E nEi S i S

ii

n

, , , ,* * * *( ) > ( ) ( ) > (∑∑
=

or
1

1

)). (6.12)

By concavity of P:

 P
E
n

E
n

P E E
S

S i S

i

( , ) ,≥ ( )∑ 1
 (6.13)

Note that (6.13) uses the fact that the strategy space is an interval, so that 

the strategy E
n

S

 is feasible. But (6.12) and (6.13) together imply that 

P E nE P E nEˆ , ˆ ,* *( ) > ( ), where Ê
E
n

S

= , which contradicts the fact that E* is 

the SKE. This proves claim (i). Claim (ii) is immediate. ■
There is, I believe, an important implication of Proposition 6.2. A num-

ber of authors argue that the cooperation that we observe among humans, 
and to a limited degree among other primates, is due to the evolution of al-
truism in the species. Altruism began, it is argued, in the relationship of the 
mother to the infant and extended over time to include other kin and even-
tually even nonkin. An important statement of this view is Kitcher (2011), 
who distinguishes among three types of altruism—biological, psychologi-
cal, and behavioral. Biological altruism occurs when an individual takes 
an action that increases the fitness of another individual at a fitness cost to 
himself: this can be due to instinct and hard-wired. Psychological altruism 
occurs when an individual is motivated by a desire to help others: intent is 
key here. Behavioral altruism occurs when an individual has self-interested 
preferences but helps another individual as part of a Nash equilibrium in a 
game with stages, or a repeated game, in an equilibrium with reciprocation. 
It is questionable whether this should be called altruism at all: nonmyopic 
self-interest would seem to be more appropriate.

Kitcher argues that the ability to cooperate was engendered by psycho-
logical altruism that developed in nonkin primates.2 But Proposition 6.2 
tells us that we cannot distinguish altruism, in the sense that each player is 
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maximizing the total payoff to all players in the game, from cooperation, in 
the sense that each is playing the simple Kant ian equilibrium, where Kant-
ian play is not motivated by altruism but (for instance) has evolved due to 
the symmetry of the game, a recognition that if we do not hang together, we 
will each hang separately.

There is, it seems to me, a reason to be suspicious of the altruistic ex-
planation of cooperation in symmetric games. The total-payoff-maximizing 
strategy profile is one in which each player gives equal weight to the payoff 
of all players—in other words, each player is a utilitarian. But it would be 
more natural to assume that altruism is limited, so that each player weights 
her own payoff more highly than the other players’ payoffs, and the simple 
Kant ian equilibrium has no relation to the (different) strategy profiles that 
maximize a nonutilitarian sum of the payoffs.

Proposition 6.2 also tells us that it will be difficult to design laboratory ex-
periments that distinguish between the hypothesis that players who play the 
Kant ian equilibrium are using the Kant ian protocol or are maximizing total 
payoff. To distinguish between these two hypotheses, the game must violate 
one of the premises of the proposition. Perhaps choosing a game with a 
discrete strategy space, having the property that the total-payoff-maximizing 
profile differs from the simple Kant ian equilibrium, is the simplest way to 
proceed.

6.2 Asymmetric Production Games

We now ask whether these examples—of quasi-linear utility functions, or 
identical utility functions—can be extended. Fix a pair of concave utility 
functions (u1,u2) for the production economies. Consider the domain of 
economies Ω u u1 2,( ) = {(u1,u2,G,XPr)|G is nonlinear, concave}. Any K× equi-
librium for an economy in this domain generates a pair of utilities for the 
players, say (a,b). Let D u u1 2 2,( ) ⊂ ℜ  be the set of such utility pairs. The next 
two propositions show that, indeed, we can “rationalize” K× equilibria on 
Ω u u1 2,( ) as Nash equilibria on economies where both players have extended 
utility functions over the domain of allocations in ℜ+

4.
Proposition 6.3 Suppose that there are extended utility functions 

V u u V u u1 1 2 2 1 2, ,( ) ( )and  such that a positive NE of the game V V G X1 2, , , Pr( ) 
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is a K× equilibrium of the game e u u G X= ( )1 2, , , Pr  for any e∈ 𝔈𝔈 where G is 
nonlinear. Then V1 and V2 represent the same ordinal preferences [that is, 
have the same indifference map] on the set D u u1 2,( ).

Let’s explain what this says. V1 and V2 are defined on allocations in ℜ+
4. 

However, they can also be viewed as having indifference curves in ℜ+
2 , since 

any allocation produces a pair of utility numbers. The proposition claims 
that if a Kant ian equilibrium can be rationalized as a Nash equilibrium with 
extended preferences on the domain Ω u u1 2,( ), those preferences must be the 
same for both players. So the constructions of Proposition 6.1—where both 
players had the same extended preference order over utility pairs—was not 
a coincidence.

Proof.
1. We are given a pair of extended utility functions V u u V u u1 1 2 2 1 2, ,( ) ( )and .  

As before, we define the associated payoff functions of game with the pro-
portional allocation rule by:

 for i V E E V u
E
E

G E E u
E
E

Gi i
S

S
S= ( ) =1 2 1 2 1

1
1 2

2

, : ˆ , ( ( ), ), ( (( ), )E ES 2



 . (6.14)

The first-order conditions for an NE of the extended games are:

 
∂

∂
= ∂

∂
=

ˆ ( , ) ˆ ( , )V E E
E

V E E
E

1 1 2

1

2 1 2

2 0. (6.15)

Writing out the derivative3 for V̂1, using (6.14), we have:

 V u
E
E

V u
E
E

G E
G E

E
E
E
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1
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1
1
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1

1
2

1
1

2
1 0u V u V u− + =) . (6.16)

Dividing by u1
1 (which is positive) and using the fact that − ′( ) =G E

u
u

S 2
1

1
1 , 

since by hypothesis the NE is a positive K× equilibrium and is hence Pareto 
efficient, we have:

V
E
E

V
u
u

E
E

G E
G E

E
E
E

VS S
S
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S S1
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1

2
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2

1
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′ +( )
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1

2
1 1

2

1
1 1

1

1
1

1

2
1

0

1

− − ′( ) =

′ − +

V
u
u

V G E

G E V
E
E

V

S

S
S

)

( ) ( )
uu
u

E
E

G E E
E

V V
u
uS

S

S
1
2

1
1

2 2

2 1
1

2
1 1

2

1
1







+ −



( )
( )

ˆ 


=

′ − + +

0

2

1
1

2
1 1

2

1
1

,

G E
E
E

V V
u
u

G E ES
S

S

( ) ( )
( ) 22

2 1
1

2
1 1

2

1
1 0

( )E
V V

u
uS −







=

 (6.17)
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from which it follows that either V V
u
u

G
G E

E

S

S1
1

2
1 1

2

1
1= ′ =

( )
or . But the second 

possibility is false because G is concave but nonlinear. Therefore, we must 
have:

 V V
u
u1

1
2
1 1

2

1
1=  (6.18)

at the proportional solution on the whole domain of economic environ-
ments. In like manner, we can expand the second condition in (6.15) to 
give:

 V V
u
u2

2
1
2 1

1

1
2=  (6.19)

on the whole domain. Therefore, V
V

V
V

2
2

1
2

2
1

1
1=  at all proportional solutions on 

the domain D u u1 2,( ) .

2. Therefore, 
V
V

V
V

2
2

1
2

2
1

1
1=  is an identity on D u u1 2,( ). But this means that the 

marginal rates of substitution of V1 and V2, viewed now as functions on the 
utility space ℜ2, are identical on domain D u u1 2,( ), and hence, V1 and V2 have 
identical indifference maps in ℜ+

2 . Hence, they represent the same prefer-
ences over pairs of utilities, proving the claim. ■

Because Kant ian and Nash equilibrium are both concepts defined on 
preferences, this means that we can assume that if Kant ian equilibrium can 
be everywhere rationalized as a Nash equilibrium with extended prefer-
ences, those extended preferences (over pairs of self-interested utilities) are 
the same for the two players. In other words, if such a representation exists, 
we may take V1 = V = V2, for some function V(u1,u2).

6.3 A Cobb-Douglas Example

We now come to the central question. When is the premise of Proposi-
tion 6.3 true—that is, when can we rationalize a multiplicative Kant ian 
equilibrium as a Nash equilibrium where players each have a social wel-
fare function as their utility function? I will begin by trying to construct 
the extended utility function V for a general Cobb-Douglas economy. Let 
u x E x E u x E x E m nm n1 21 1 0, , , ,( ) = −( ) ( ) = −( ) < < < ∞. These are two dif-
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ferent utility functions representing Cobb-Douglas preferences. On the do-
main Ω u u1 2,( ) we know that (positive) multiplicative Kant ian equilibrium is 
Pareto efficient. We know that Nash equilibrium is defined and is always 
Pareto inefficient. We study whether it is possible to construct extended 
preferences V for each player such that the Nash equilibrium on the ex-
tended economy is the Kant ian equilibrium for (u1,u2,G,XPr).

Note that if G were linear, then the Nash equilibria on Ω u u1 2,( ) are effi-
cient and that they therefore coincide with the multiplicative Kant ian equi-
libria. I have eliminated this case from the domain.

Equation (6.19) tells us how the slopes of the indifference curves of Vi 
are related to the Kant ian equilibrium. Now (6.19) says that it must be the 
case that:

 
V a b
V a b

E

E

m

n
2

1

1

2

1

1

,
,

,
( )
( ) = −( )

−( )  (6.20)

where a u x E b u x E= ( ) = ( )1 1 1 2 2 2, ,  at the Nash allocation (which is also the 
Kant ian allocation of the original economy). To prove the affirmative claim, 

we must show that there exists a function Φ :ℜ →ℜ+
2  such that, at any Kant-

ian equilibrium on the domain Ω u u1 2,( ) , it is true that Φ a b
E

E

m

n,( ) = − −( )
−( )

1

1

1

2
,  

where (E1,E2) is the Kant ian effort vector which yields utilities (a,b). For 

if this is true, then we have characterized − V
V

2

1

 on its domain (namely: 

− ( )
( ) = ( )V a b

V a b
a b2

1

1
1

,
,

,Φ ) and so will have characterized the indifference map 

of V. The proof will establish the existence of such a function Φ and then 
of V, which will also be differentiable.

We next observe that an interior Kant ian allocation on the domain Ω u u1 2,( ) 
is characterized by the following two equations and inequality:

 mx
E

nx
E

1

1

2

21 1−
=

−
, (6.21)

 x
E

x
E

1

1

2

2= , (6.22)

and
 m

E
E

1

11
1

−
< . (6.23)
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Equation (6.21) says the MRSs of the two players are equal. Equation 
(6.22) says the allocation is proportional. Equation (6.23) is equivalent to  

m
x

E
x
E

x x
E E

1

1

1

1

1 2

1 21−
< = +

+
. We can therefore find a strictly concave G whose 

slope at the point E E x x1 2 1 2+ +( ),  equals the MRS, because the last in-
equality tells us the marginal product of this G is less than its average prod-
uct at this point, which is the condition for finding a nonlinear concave G 
passing through the point. Indeed, note that (6.23) can be rewritten as:

 E
m

1 1
1

<
+

. (6.24)

We now rewrite the equations characterizing the interior Kant ian equi-
libria on the domain Ω u u1 2,( ) as follows:

 

mE nE n m E E

x E x E

x E a

x E

m

1 2 1 2

1 2 2 1

1 1

2 2

0

0

1

1

− + −( ) =
− =

−( ) =

−(( ) =

<
+

n
b

E
m

1 1
1

, (6.25)

where we have also included the utility values. We can view these equations 
as ones defining the entire class of interior Kant ian allocations on Ω u u1 2,( ),  

where E1 is restricted to the interval ( , )0
1

1m +
, as a function of the two 

parameters (a,b).
Our procedure will be to show, using the implicit function theorem, that 

the four variables E1,E2,x1,x2 can be defined as (differentiable) functions of 
(a,b) on the solution space of (6.25). It will then immediately follow that we 

have constructed the function Φ a b
E a b

E a b

m

n,
,

,
( ) = −

− ( )( )
− ( )( )

1

1

1

2
, which will com-

plete the proof. (Note that the denominator in the definition of Φ is never 

zero, because E
n

2 1
1

<
+

.)

To show this, we will demonstrate that the Jacobian of the system (6.25) 
never vanishes on the domain D u u1 2,( ). Order the variables (x1,E1,x2,E2) and 
compute that the Jacobian of (6.25) is:
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 J
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. (6.26)

Expanding the determinant of J and dividing by the positive number 
1 11 1 2 1

−( ) −( )− −
E E

m n
 demonstrates that J ≠ 0  if and only if:
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Suppose J = 0 . By (6.21) and (6.22), ( ) ( )
mE

E
nE

E

1

1

2

21
1

1
1

−
− =

−
− , and so we 

can rewrite the negation of (6.27) as:
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1 2 2 1

1

1 1

1

� ��� ���

−− − =m E E E

pos

) ) ( )2 1 21 0
� ��� ���

and further simplify to:

E E n m nE E E n m mE2 1 2 2 1 0( ) ( ) ,− − + − + =

which in turn simplifies to:

 nE mE2 1= . (6.28)

But this contradicts the fact that 
mE

E
nE

E

1

1

2

21 1−
=

−
, since m ≠ n, which 

proves that J ≠ 0.
It therefore follows by the implicit function theorem that there is a dif-

ferentiable function Φ that can be defined locally around any point (a,b). 
What is the relevant global extension of this result? We have to consider the 
domain D u u1 2 2,( ) ∈ℜ  for which there exists a nonlinear concave differentia-
ble production function G at which the multiplicative Kant ian equilibrium 
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of the economy (u1,u2,G,XPr) is a point a b E u u, ,( ) ∈ ( )1 2

. Our existence results 
(proved in chapter 7 below) will show that this is a large domain. The global 
inverse theorem of Hadamard4 allows us to extend the locally defined func-
tion Φ to any compact subset of D. (We will not check this here.) Except for 
checking the Hadamard extension, we have therefore proved that there ex-
ists a continuously differentiable function Φ(a,b) that specifies the marginal 
rate of substitution of the social welfare function V(a,b), whose existence we 
wish to prove, at every point (a,b) for which the system (6.25) can be solved.

We must finally ask: Can we indeed “integrate” the function Φ to find 
the function V? The answer is yes. Consider the differential equation:

 da
db

a b= ( )Φ , . (6.29)

Because Φ is continuously differentiable, by the Picard-Lindelöf theorem, 
there is a unique solution to the differential equation (6.29) for any initial 
condition on the function a. Denote the solution by Q(a,b,k) = 0, where k 
is a constant associated with the initial condition. Now differentiating this 
equation with respect to b gives:

Q
da
db

Q
da
db

a b
Q
Q1 2

2

1

0+ = = ( ) = −or Φ , .

But this means that the Q(a,b,k) = 0 is the locus of the kth indifference 
curve of the function V. By varying k, we sweep out the entire indifference 
map of V. The uniqueness guaranteed by the Picard-Lindelöf theorem tells 
us that the function V is unique, up to ordinal transformation, which will 
preserve the indifference map.5

Proposition 6.4 Let u x E x E u x E x Em n1 21 1, , , ,( ) = −( ) ( ) = −( ) 0 < m  
< n < ∞. Then there exists a differentiable function V : ℜ → ℜ4 , more pre-
cisely of the form V u u: , , ,1 2⋅ ⋅( ) ⋅ ⋅( )( ), such that in a game induced by the 
economy (V,V,G,XPr), where G is any nonlinear concave differentiable pro-
duction function, and where the preferences of each player are given by V, 
the NE is the K× equilibrium of the game induced by (u1,u2,G,XPr). Further-
more, if (V1,V2,G,XPr) is any game with extended preferences whose NE is the 
K×equilibrium of (u1,u2,G,XPr), then Vi is ordinally equivalent to V for i = 1,2.
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It is interesting to note where strict concavity of G enters. If a Kant ian 
equilibrium is associated with a linear G, then (6.23) becomes an equality. 
This in turn means that the expression in (6.27) becomes zero, because 

( ) ( )
mE

E
nE

E

1

1

2

21
1

1
1 0

−
− =

−
− = . Therefore, J = 0. Note also that in Proposi-

tion 6.3, I used the fact that ′( ) ≠
( )

G E
G E

E
S

S

S  to deduce (6.19), with which 
the proof of that proposition begins.

Let us calculate the slope of the indifference curves of V for the Cobb-
Douglas example of Proposition 6.4, when m = 1 and n = 2. The equation 
(6.25) can in this case can be solved for E1 as a function of (a,b):

 ( )2 4 1 01 3 1− − −( ) =E b a E . (6.30)

This cubic equation has a unique real root6 given by:

 E a ab a b a b1 5 3 1 3 2 3 3 2 4 12 2 3 9 3 16 27= − − + − +( ) ( )( ) / ( ( )/ / /33

1 3 2 3 3 2 4
1 3
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 (6.31)

Furthermore, we can show for this example that E
E

E
2

1

12
=

−
, so the func-

tion Φ a b
E a b
E a b

m

n,
( ( , ))
( ( , ))

( ) = − −
−

1
1

1

2  reduces to Φ a b E a b, , /( ) = − + ( )1 21 , and 

may be written down explicitly using (6.31). Recall that Φ(a,b) is the slope 
of indifference curve of V at the utility pair (a,b). V is hardly a “nice” 
 function;  the transformation of (u1,u2) into V can hardly be considered 
natural.

Let us note why it is easy to construct the extended preferences in the 
quasi-linear case and in the case when the players have the same utility 
function. In these two cases, the fundamental equation (6.19) becomes 

− = −V
V

2

1

1 . This means V(a,b) = a + b, which gives another proof of Prop-

osition 6.1.
It is indeed possible to extend Proposition 6.3 to any pair of fixed con-

cave, differentiable utility functions (u1,u2). We begin by replacing the sys-
tem (6.21)–(6.23) with the general system:
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u x E
u x E

u x E
u x E

x E x

2
1 1 1

1
1 1 1

2
2 2 2

1
2 2 2

1 2

( , )
( , )

( , )
( , )

=

− 22 1

1 1 1

2 2 2

2
1 1 1

1
1 2 2

0E

u x E a

u x E b

u x E
u x E

=
=

=

−

( )

( , )

( , )
( , ))

< x
E

1

1

 (6.32)

and then compute its Jacobian, and so on. In general, the extended func-
tion V will not be computable in closed form.

The next question I ask is what happens to the function V if we replace  
{ui} with ordinal transformations of them. Let ˆ ˆu f u u g u1 1 2 1= =� �and  where 
f and g are strictly monotone increasing functions. Consider the analogous 
system to (6.32):

 

′
′

=
′
′

f a u x E
f a u x E

g b u x E( ) ( , )
( ) ( , )

( ) ( , )2
1 1 1

1
1 1 1

2
2 2 2

gg b u x E

x E x E

f u x E f a

g u

( ) ( , )

( ( , )) ( )

(

1
2 2 2

1 2 2 1

1 1 1

2

0− =
=

(( , ))

( ) ( , )
( ) ( , )

x E f b

f a u x E
f a u x E

x

2 2

2
1 1 1

1
1 2 2

= ( )

− ′
′

<
11

1E

. (6.33)

A quick comparison shows this is identical to the original system (6.32)—
just apply f −1 and g−1 to the third and fourth equations. Let the extended 
utility function for the new system be denoted by V̂  and the extended pref-
erences for the system (6.32) be denoted by V. Then we have:

 ˆ ( ( ), ( )) ( , )V f a g b V a b= , (6.34)

or, writing this slightly differently:

 ˆ ( ( ), ( )) ( , )V f u g u V u u1 2 1 2= . (6.35)

This means that V̂  and V define the same preferences on arguments 
( , , , )x E x E1 1 2 2 4∈ℜ+.

Let us now move from the language of utility functions to the language 
of preference orders. Denote the set of self-interested preference orders 
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over consumption and effort by R. Denote the set of preference orders over 
the whole allocation for two players (an element in ℜ+

4) by Q. The correct 
way of stating the central question of this chapter is: Given concavifiable 
preference orders R R1 2, ∈RR, is there a mapping F : RR QQ2 →  such that the 
multiplicative Kant ian equilibrium of the economy (R1,R2,G,XPr) is always 
a Nash equilibrium of the economy ( ( , ), ( , ), , )PrF R R F R R G X1 2 2 1 ? F, in this 
case, is a social choice rule: given any two preference orders, it aggregates 
them into a preference order for society. Because the utility function is a 
derived concept, we must state the query using the fundamental notion of 
preference orders. We have:

Proposition 6.5 There exists a social choice rule F : RR QQ2 →  such that 
for any pair of self-interested preferences R R1 2, ∈RR, the K× equilibria of the 
economy (R1,R2,G,XPr) is an NE of the economy with extended preferences 
( ( , ), ( , ), , )PrF R R F R R G X1 2 2 1  for all increasing, concave production functions G.

The proof is, in fact, the equation (6.35). For this equation says that the 
induced preferences on ℜ+

4 (for which the Nash equilibrium is the Kant ian 
equilibrium of the problem with preference orders on ℜ+

2) are independent 
of the utility functions that are chosen to represent the self-regarding prefer-
ences. In other words, the induced preferences on the whole allocation that 
both players have in the “extended” game depend only on their preferences 
in the original game.

At this point, our skeptic can say: “Well, you see, Kant ian optimization 
really isn’t any different from Nash optimization. One just has to realize that 
people have preferences over the whole allocation.” Proposition 6.5 could 
be taken to vindicate the program of behavioral economics.

But I disagree. For the function V that must be constructed, which rep-
resents the preferences of the players on the whole allocation, is in general 
extremely complex, as I have shown above for the Cobb-Douglas example. 
If the transformation from (u1,u2) were natural, as it is in the case when the 
{ui} are either quasi-linear or identical, then it would be plausible to assert 
that Kant ian equilibrium is an unnecessary diversion: we could instead en-
tertain the view that when people don’t play what appears to be the Nash 
equilibrium from self-regarding preferences, they are being altruistic, using 
a social welfare function as their preferences. But given the complexity of 
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the function V, and given the fact that V changes with (u1,u2), this view is 
impossible to maintain.

Let’s take a simple example to illustrate the point. Suppose that the two 
players in a production game have utility functions:

 ˆ( , ) ( ( )) , ˆ( , ) ( ( ))/u x E x h E u x E x h E1 1 1 1 1 1 3 2 2 2 2 2 1= − = − //2. (6.36)

This is how they think of their payoffs from “fishing” in cardinally meaning-
ful units. Or these are the payoff functions provided by the experimenter 
in a lab experiment. Of course, the multiplicative Kant ian equilibrium 
of this game, in the economy ( ˆ , ˆ , , )Pru u G X1 2 , is identical to the Kant ian 
equilibrium with the utility representation u x E x h Ei i i i i i( , ) ( )= − . Now the 
monotonic transformations that relate the second (obviously quasi-linear) 
representation to the representation of (6.36) are f u u g u u( ) ( )= =3 2and . By 
Proposition 6.5 (or equation (6.35)), the extended preferences that each 
must maximize in the game whose Nash equilibrium will be the Kant ian 
equilibrium of the original game are ˆ ( ˆ , ˆ ) ( ˆ ) ( ˆ )V u u u u1 2 1 3 2 2= + . But this is not 
a natural construction. The “nice” formula V u u u u( , )1 2 1 2= +  applies only if 
the representation of the quasi-linear preferences is given by u x h Ei i i= − ( ).  
So it is false to say that in a quasi-linear economy, it suffices to rationalize 
the Kant ian equilibrium as a Nash equilibrium that each player maximize 
total welfare. This formulation works only for a particular representation of 
players’ preference orders by utility functions.7

Even in the case of quasi-linear preferences (that is, preferences that ad-
mit a quasi-linear utility representation), the extended preferences that play-
ers would have to be using are complex. Let us state this in terms of labora-
tory experiments. Suppose that the experimenter poses a prisoner’s dilemma 
game to the players, whose payoffs are given by the matrix in table 6.1.

Table 6.1 A prisoner’s dilemma

Cooperate Defect

Cooperate (2,2) (0,3)
Defect (3,0) (1,1)
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According to Proposition 6.2, the simple Kant ian equilibrium of this 
game is the same as the Nash equilibrium of the game where each player 
maximizes the sum of the payoffs P1 + P2. But now suppose that the experi-
menter proposes the payoff matrix shown in table 6.2.

Table 6.2 The same prisoner’s dilemma as in table 6.1

Cooperate Defect

Cooperate (2,4) (0,4.5)
Defect (3,3) (1,3.5)

Table 6.2 is, in fact, the same prisoner’s dilemma game as table 6.1: I 
have simply transformed the von Neumann–Morgenstern utilities of the 

second player by the positive affine transformation 
1
2

3u + . The Kant ian 

equilibria of the two games are identical. But in order to produce the Kant-
ian equilibrium of the second game as a Nash equilibrium of a game with 
extended payoff functions, the players must both maximize P P1 22 3+ −( ). 
Although maximizing the sum of payoffs might be natural, maximizing the 
latter function is not.

6.4 Summary

To reiterate, I take the results of this chapter to support the case that Kant ian 
optimization is a fundamentally different protocol from Nash optimization. 
Formally, we can explain cooperation as the result of Nash reasoning with 
preferences defined on the entire allocation. In some cases, the utility func-
tion that players must adopt on the entire allocation to rationalize Kant ian 
equilibria in this way seems natural. But in general, the extended utility 
function is not natural. Even for the simple case of quasi-linear preferences, 
producing a simple extended utility function (which “maximizes total util-
ity”) is achieved only with a particular choice of the utility representation 
of the original self-regarding preferences. The same is true with regard to 
rationalizing the prisoner’s dilemma.
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Although Nash rationalization of cooperation is mathematically pos-
sible, to make the story credible, one would have to explain how players 
move from their self-regarding preferences to the extended preferences that 
are required. Behavioral economists have limited themselves to situations 
and experiments, almost ubiquitously, in which the identification of the 
fair allocation is obvious or in which players have identical cardinal utility 
functions. In the latter case, the strategy profile that maximizes total payoff 
will coincide with the Kant ian equilibrium of the game with self-regarding 
preferences. But this simple “altruistic” preference order on the entire al-
location works only for players with symmetric preferences represented by 
particular cardinal utility functions (or payoff functions) and does not work 
at all when players have different self-regarding preferences.

In contrast, the Kant ian explanation seems much simpler. It enables co-
operation where it is not obvious what cooperation entails (for example, in 
the production economies)—that is, what the Pareto-efficient solution is. 
Of course, to complete the story, one must explain how people learn to op-
timize in the Kant ian manner. When players are identical, simple Kant ian 
optimization will work—and in this case, it is not hard to imagine the sym-
metry of the situation suggesting the simple Kant ian protocol. How people 
might learn to optimize in the multiplicative or additive way, for games with 
heterogeneous players, is harder to explain. Nevertheless, in real life, there 
is often a focal “right” and “wrong” choice, and so the problem reduces to 
a simple game with two strategies, and simple Kant ian optimization will 
work, even if the game is not symmetric.
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s e v e n

Existence and Dynamics of  
Kant ian Equilibrium

Almost all the results up until now are of the form “If a Kant ian equilib-
rium exists, it has such and such properties.” In this chapter, I establish 

the existence of Kant ian equilibria in the production economies we have 
been studying.

7.1 Existence of Strictly Positive K× Equilibria 
for Production Economies

Consider the following condition on utility functions u(x,E):
Condition A. A utility function u satisfies Condition A if and only if

limlim
( , )
( , )ε

ε
ε→ →

− =
0 0

2

1

0
x

u x
u x

.

Examples: Let u x E x Ea a( , ) ( )= − −1 1 . Then − = −
−

u x
u x

a
a

x2

1

1
1

( ,
( , )

ε
ε ε
) , and  

Condition A holds. Let u x e x h E( , ) ( )= − , where ′ =h ( ) .0 0  Then  

− = ′u x
u x

h2

1

( , )
( ,

( )
ε
ε

ε
)

, and Condition A holds. Let u x E ax ar( , ) ( ( )= + −1 ( ) )1 1− E r r.  

Now − = − − −u x
u x

a
a x

r2

1

11 1( ,
( ,

( )
ε
ε

ε)
)

, and Con dition A holds for −∞ < ≤r 1, which 

is to say, for all concave CES utility functions.
Define the domain of utility functions as:

U =
ℜ × [ ] → ℜ >+u M M u: , , ,0 0some

differentiable &concave, Condition holdsA








.

Define the domain of production functions as:

G =
increasing

differentiable concave
G G

G
: ; ,

, ;
ℜ → ℜ

′
+ +

>>






0

.
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Define the domain of economies as:

DD= ,u u G u Gn i1, , ,…( ) ∈ ∈{ }U G .

Proposition 7.1 For all economies e D∈ , a strictly positive K× equilib-
rium exists.

Recall that a multiplicative Kant ian equilibrium is a feasible allocation 
x Ei i

i n
,

, ,
( ) =1…

 such that:

( ) ( ),∀ =i
E
E

G E
i

s
sxi

and for all i, 1∈
≤ ≤

arg max ( ( ), )
0 ρ

ρ ρ
M
E

i
i

s
s i

i

u
E
E

G E E . (If Ei = 0, the domain of the 

argmax function is 0 ≤ < ∞ρ .)
Let M > 0 and define the rectangle R M n nε ε= [ ] ⊂ ℜ++,  for any 0 < ε < M.  

First, we prove a lemma:
Lemma 7.2 Fix M. For any G ∈G, limmax ( )

ε ε
ε

→ ∈
=

0
0

E R

i

s

S

i

E
E

G
E
E

.
Proof.
1. For any ε > 0, we must evaluate the solution of:

 

max ( )

. .
( ) ( )

Q Q
G Q

s t
n M

M
Q

n M

1

1 1

ε

ε ε
ε

− ≤ ≤ − ++
, (7.1)

where Q
E
E

s

i= .

There are three possibilities for the solution: (a) Q
n

M
= + −

1
1( )ε ;  

(b) Q
n M= + −

1
1( )
ε

; or (c) Q
n

M
n M∈ + − + −

(
( )

,
( )

)1
1

1
1ε
ε

.

2. Case (a). At Q
n

M
= + −

1
1( )ε

, the maximand is: 
M

M n
G

n
M

G
+ −

− → =
( )

(
( )

) ( )
1

1
0 02

ε
ε ε+ .

3. Case (b). In this case, the maximand is: 
ε

ε
ε

+(n M
G n M

−
+ − →

1
1 0

)
( ( ) ) .

4. Case (c). In this case, we compute the first-order condition with re-
spect to Q, for the maximization problem (7.1). This condition is:
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G Q

Q
G Q

( )
( )

*

*
*ε ε ε= ′   (7.2)

at the solution Q*. If εQ* does not approach zero with ε, then the 
right-hand side of (7.2) does approach zero, as we wish to show. If Q* 
does approach zero, it cannot approach faster than 1

1+ −( )n
M

ε , and  

so ε ε ε ε ε ε ε ε′ ≤ ′
− → ′ ≤ →G Q G

n
M

G G( ) (
( )

) ( (+ ) ) 0
21

. This proves the 
lemma. ■

Proof of proposition 7.1.
1. Given ( , )uu DDG ∈ , consider the n-rectangle R M

nε ε= [ ],  for some  
0 < ε < M. Define the individual best-reply correspondences on a domain 
Rε as follows:

 B E E rE r u
E
E

G Ei n i i

M
E

i

S
S

i

( , , ) { | argmax ( ( ),1

0

… = ∈
≤ ≤ρ

ρ ρEEi )}.1 (7.3)

Define B = (B1,…,B n), a mapping whose domain is Rε and whose range 

is ℜ+
n . The mapping B is convex-valued because u

E
E

G E Ei
i

S
S i( ( ), )ρ ρ  is a 

concave function of ρ. It is upper hemicontinuous by the Berge maximum 
theorem. We must show that B maps Rε into itself, for some sufficiently 
small ε > 0. That is:

for some ε > 0 and any E = ∈( , , )E E Rn1… ε, Bi( )E ≥ ε for all i.
The condition that guarantees the required inequality is:

 ( )( )( ( ( ), )∃ ∀ ∀ ∈ ≥
=

ε ε
ε>0)( i R

d
dr

u
E
E

G rE rE
r

E

i
i

s
s i

i

E 0, (7.4)

for (7.4) guarantees that that scale factor r that maximizes i’s utility is at least 
ε
Ei

, and hence B E E
E

Ei i N i
i

i( , )\ ≥ =ε ε. Condition (7.4) expands to:

 ( ) ) ( ) ( ( )∃ ∀ ∀ ∈ ′ ≥ −ε εε>0)( (i R G
E

E
u
u

E
E

G
E

Ei
S

i

i

i

S i
SE 2

1

ε
,, )ε . (7.5)

The argument of G′ is bounded above as ε approaches zero, so the left-
hand side of this inequality is bounded away from zero, because G ∈G.  
It therefore suffices to show that the right-hand side approaches zero as ε 
becomes small.

Now Lemma 7.2 tells us that the argument 
E
E

G
E

E
i

S i
S( )

ε
 of the mar-

ginal rate of substitution on the right-hand side of (7.5) approaches zero, 
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and therefore, by Condition A, the marginal rate of substitution approaches 
zero.

This concludes the demonstration that for small enough ε, B maps Rε 
into itself.

2. Therefore, all the assumptions of Kakutani’s fixed point theorem hold, 
and so a fixed point of B exists on some domain Rε. But a fixed point on this 
domain is a strictly positive K× equilibrium, which concludes the proof. ■

7.2 Existence of Kβ Equilibria for 0 ≤ β ≤ ∞

Recall (chapter 4) the infinite family of efficient Kant ian pairs ( , )Xβ βϕ , for  
0 ≤ β ≤ ∞. Proposition 7.1 proves the existence of positive Kant ian equilibria 
for β = 0, which is to say, Pareto-efficient Kant ian equilibria. The proof for 
β > 0 is simpler, because of Proposition 4.1: that is, any Kβ Kant ian equilib-
rium for β > 0 is Pareto efficient. We do not need an analog to Lemma 7.2.

Let �U={ some differentiable concaveu M M u: [ , ] , , &ℜ× → ℜ >0 0 }}; let  
�G = ℜ → ℜ+ +{ : ,G Gconcave&differentiable}; let � …D = ={ ( , , , ),e u u Gn1

u Gi ∈ ∈� �U G, }.
Proposition 7.3 For any β > 0, on the domain �DD, a Kant ian equilibrium 

with respect to the allocation rule and Kant ian variation ( , )Xβ βϕ  exists.
Proof.
1. Consider 0 < β < ∞. The domain of effort vectors is the convex, com-

pact set R M n0 0= [ , ] . For any vector in the domain, define the best-reply 
correspondences:

 

B E E rE r ri n i

E
M
Ei i

( , , ) { ( ) argmax
,

1 1… = + − ∈
∈

+
+
+

β
ρ β

β
β
β

|






+
+

+ − + −u
E

E n
G E n Ei

i

S
S i( ( ( (

β
β

ρ ρ β ρ ρ β1) ), 1) ).
 (7.6)

The domain restriction on ρ in the maximization guarantees that 
B E E Ri n( , , )1 0… ⊆ .2 Define the vector-valued best-reply correspondence by 
B = (B1,…,B n). B is convex-valued, because the argument in the maximi-
zation in (7.6) is a concave function of ρ. It is upper hemicontinuous by the 
maximum theorem. Hence, all the assumptions of the Kakutani fixed point 
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theorem hold, and so a fixed point of B exists. But such a fixed point is a Kβ 
equilibrium.

2. For β = ∞ (that is, K+ equilibrium), a separate argument is required. 
It is obvious how to define the best-reply correspondence, and the same ap-
proach works. ■

7.3 Is There an Allocation Rule That Nash Equilibrium 
Implements Efficiently on the Domain �DD?

What Propositions 7.1 and 7.3 show is that for every Kant ian variation Kβ, 
for 0 ≤ β ≤ ∞, there is (at least) one allocation rule that optimization ac-
cording to the Kβ protocol implements efficiently on a large domain of pro-
duction economies. We may ask: Is there any allocation rule that the Nash 
protocol implements efficiently on the domain �DD? The answer is negative.

Proposition 7.4
a. There is no allocation rule that is efficiently implementable in NE on 

the domain �DD.
b. On continuum economies, Walrasian rules (with no taxation) are ef-

ficiently Nash implementable.
The Walrasian allocation rules are defined by the following way of shar-

ing output. The share allocated to player i is equal to:

 for all i, θ σi Wa n
S

S
i i

S S

E E G
G E
G E

E
G E E

G E
, ( , , , )

( )
( )

(
( )
(

1 1… = ′ + − ′
SS )

), (7.7)

where the profit shares ( , , )σ σ1… n  are fixed nonnegative numbers summing 
to one. Note that the share functions have the argument G as well as E. 
Equation (7.7) states that the output received by player i (that is, θi Wa SG E, ( ))  
is equal to the sum of her labor income (her effort supply times the marginal 
productivity of effort) and her share of profits.

Proof.
1. An interior allocation E is an NE on the domain of economies for the 

allocation rule θ if and only if:

 ∀ ⋅ ∂ + ′ + =j u
E

G E G E uj
j

j
S j S j

1 2 0(
( )

( ) ( ) ( ))
θ
∂

θE
E . (7.8)
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Therefore, θ is efficiently Nash-implementable if and only if:

 ∀ = +
′

∂
∂

j
G E
G E E

j
S

S j1 θ θ
( )

( )
( )

)
E

E( . (7.9)

2. Indeed, (7.9) must hold for the entire positive orthant ℜ++
n , for given 

any positive vector E, we can construct n concave utility functions such that 
(7.8) holds at E.

3. For fixed E = (E1,…,En), define ψ θj j j j nx E E E x E E( ) ( , , , , , , )= − +1 2 1 1… …  
and µ j S jx G x E E( ) ( )= + − . Then (7.9) gives us the differential equation:

 1 = +
′

′ψ µ
µ

ψj
j

j
jx

x
x

x( )
( )

( ) ( )
( ) ( ), (7.10)

which must hold on ℜ++.
4. But (7.10) implies that:

 (ψ
ψ

µ
µ

j

j

j

j

x
x

x
x

) ( )
( )

( ) ( )
( )

′
−

= ′
1

, (7.11)

which implies that µ ψj j jx x k( )( ( ))1− = , and therefore, ψ
µ

j
j j

jx
k

x
( )

( )
( )

= −
−

1
E ,  

where the constant kj may depend on the ray ( 1E E x E Ej j n, , , , , )… …− +1 1  on 
which ψ j is defined—that is, upon E− j.

5. In turn, this last equation says that on the ray ( 1E E x E Ej j n, , , , , )… …− +1 1  
we have:

 θj j j
n

S j

S j

E E x E E G x E E

G x E E k

( , , , , , ) ( )

( )

1 1 1… …− + + −
= + − − jj j( )E−

, (7.12)

which says that “every agent receives his entire marginal product” on this 
space. To be precise:

 

( , )

( ( ,..., , , ,..., ) (

∀ >
+ −− +

x y

E E x E E G x E Ej j j n S j

0
1 1 1θ ))

( ,..., , , ,..., ) ( )

(

−
+ − =

+

− +θj j j n S jE E y E E G y E E

G x

1 1 1

EE E G y E ES j S j− − + −) ( )).

 (7.13)

6. Letting n = 2, for simplicity of exposition, we have, for any positive (inte-
rior) vector E = ( , ):E E1 2  

 

( )a G E G E E E G E E G ES S( ) ( ) ( , ) ( ) ( , ) ( ),− = −2 1 1 2 1 2 20θ θ and

(( )b G E G E E E G E E G ES S( ) ( ) ( , ) ( ) ( , ) ( )− = −1 2 1 2 2 1 10θ θ  (7.14)
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Adding (7.14a) and (7.14b) gives:

 G E G E G E E G E E G ES( ) ( ) ( ) ( , ) ( ) ( , ) ( ).− − = − −1 2 1 2 2 2 1 10 0θ θ  (7.15)

Since the allocation E is positive, we have, by strict concavity of G, that the 
left-hand side of equation (7.15) is negative. Therefore, either θ1 20( , )E > 0 or  
θ2 1 0 0( , )E > —suppose the former. By (7.14) again:

 G E E G E( ) ( , ) ( ),2 2 2 20= θ  (7.16)

from which it follows that θ2 20( , )E = 1 and hence θ1 20( , )E = 0. This contra-
diction establishes part a.

7. The proof of part b is well known, for part b just says that Nash behav-
ior, taking prices as given, at the Walrasian allocation rule, induces Pareto 
efficiency. ■

The key point, in part a of Proposition 7.4, is that in a finite economy, an 
agent cannot ignore the effect of his labor supply on the marginal productiv-
ity of labor. It is only in an economy with an infinite number of agents that 
the wage is not affected by individual labor choices.

Proposition 7.4 is another way of stating the benefits of cooperation. Of 
course, cooperation works only on a “small” domain of allocation rules for 
production economies: the rules that allocate part of the product according 
to equal division and part according to proportional division.3

7.4 Dynamics

There is a convenient dynamic process that, for well-behaved games, will 
converge to a Nash equilibrium of the game from an arbitrary initial strat-
egy vector. It is to iterate the Nash best-reply correspondence. If the payoff 
functions are sufficiently well behaved, “iterated best replies” converges to a 
Nash equilibrium of the game. We can use the same procedure for Kant ian 
equilibrium: “iterated best replies” converges to a Kant ian equilibrium, if 
the game is well behaved, using the Kant ian best-reply correspondence de-
fined in the proof of Proposition 7.1. The purpose of this section—to dem-
onstrate this—is again to emphasize the formal similarity between Nash and 
Kant ian equilibrium.
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We will study a special case: there are two players, and they each have 
quasi-linear preferences u x E x c Ei i( , ) ( )= − , for i = 1,2, where ci are strictly 
convex, increasing, differentiable functions. We will work with the K+ pro-
tocol and the equal-division rule. We are given an economy (u1,u2,G) with 
G concave. Define the best-reply function for effort vectors in R M0 20= [ , ] :

 B = ( , )B B1 2 , where B E E E ri i i( , ) ( )1 2 = + E  (7.17)

and r u
G E r

E ri

E r M E

i
S

i

i i
( ) argmax (

( )
, )E = + +

− ≤ ≤ −

2
2

. For the utility functions speci-

fied, the argmax in (7.17) is unique, and so B is single-valued. Note that 
a fixed point of B is an additive Kant ian equilibrium for the equal-division 
rule, since if B( , ) ( , )E E E E1 2 1 2= , then “r = 0” is the argmax for both players.

Proposition 7.5 The mapping B : ℜ → ℜ+ +
2 2  is a contraction mapping, 

and hence it possesses a unique fixed point.4

It immediately follows that iterated application of B starting from any 
initial vector of efforts will converge to its fixed point, which is an additive 
Kant ian equilibrium (indeed, the unique such equilibrium for the econ-
omy specified).

The proof of Proposition 7.5 uses the following mathematical fact:
Lemma 7.6 (Courtesy of Roger Howe) Let  be a norm on ℜn and 

let A� � be the associated sup norm on mappings A X n: → ℜ , defined by 

A
A x

xx X
� � =

∈
sup

( )
, where X is a closed, convex set in ℜn. Let A be differentiable,  

and J be the n × n Jacobian matrix of A. If J� � < 1 on X, then A is a contrac-
tion mapping.

Proof.
1. We must show that there is an ε > 0 such that:

for all x x X A x A x x x0 1 1 0 1 01, , ( )∈ ( ) − ( ) < − −ε .

By convexity of X, u x x X( ) : ( )λ λ λ= + − ∈0 11  for all λ ∈[ , ]0 1 . By the funda-
mental theorem of calculus for mappings:

 

A x A x J u du J u u d

J u

( ) ( ) ( ) ( ( )) ( )

( ( )

1 0

0

1

− = = ′

=

∫ ∫i i
γ

λ λ λ

λ )) ( ) ,i x x d1 0

0

1

−∫ λ
 (7.18)
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where J is the Jacobian matrix of A and γ is the line segment connecting x0 
to x1, defined above.

2. Define ε by J� � = −1 ε; since J� � < 1, ε > 0. Hence, from (7.18) we 
compute:

A x A x J u x x d x x( ) ( ) ( ( )) ( ) ( )1 0 1 0 1 0

0

1

1− ≤ − ≤ − −∫ λ λ εi ,

where the first inequality applies the triangle inequality to (7.18), and the 
second follows from the definition of J� � . This establishes that A is a con-
traction mapping. ■

Proof of proposition 7.5.
1. The Jacobian of the mapping B is 

1

1
1
1

2
1

1
2

2
2

+

+













r r

r r
, where r E Ei

j( , )1 2 = 

∂
∂

r
E

E E
j

i ( , )1 2 , assuming that these derivatives exist. Thus, Lemma 7.6 re-

quires that we show that the norm of this matrix is less than unity. We take 
 to be the Euclidean norm on ℜ2. We must show that:

 E
r r

r r
E
E

= ⇒
+ ( )

+ ( )















1

1

1
1
1

2
1

1
2

2
2

1

2

E E

E E

( )

( )




 < 1. (7.19)

2. By differentiability of cj, the function rj is defined by the following first-
order condition:
 ′ + = ′ +G E r c E rS j j j j( ( )) ( ) ( ( ))2 E E , (7.20)

which has a unique solution. By the implicit function theorem, the deriva-
tives of  rj(.) are given by:

′′ + = ′′ +G y r c x rj
i
j j j

i
j

i
j( )( ( )) ( ) ( )( ( ))1 2 E Eδ ,

where y G E r x E r Ej S j j j j= + = +( ( )), ( )2 E  and δi
j i j

i j
=

=
≠





1
0
,
,

if
if

; or

 r E
c x G y

G y c xi
j i

j j j j

j j j( )
( ) ( ) ( )

( ) ( ) ( )
=

′′ − ′′
′′ − ′′

δ
2

. (7.21)

3. It follows from (7.19) that the Jacobian of B is given by:

′′
′′ − ′′

− ′′
′′ − ′

G y
G y c x

G y
G y c

( )
( ) ( ) ( )

( )
( ) (

1

1 1 1

1

1 12 2 ′′

− ′′
′′ − ′′

′′
′′

) ( )

( )
( ) ( ) ( )

( )
(

x

G y
G y c x

G y
G y

1

2

2 2 2

2

2 2 22 2 2) ( ) ( )− ′′



















c x ,
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and so, from step 1, we need only show that:

 ( ( )) ( ( ))Q E E Q E E1 1 2 2 2 1 2 2 1− + − < , (7.22)

where ( , )E E1 2 1=  and Q
G y

G y c x
j

j

j j j=
′′

′′ − ′′
( )

( ) ( ) ( )2
. Note that Qj < 1

2
.  

Inequality (7.22) reduces to showing that 
1
2

1 2 11 2( )− <E E , which is obvi-

ously true, proving the proposition. ■

7.5 Summary

The upshot of this chapter is that Pareto-efficient Kant ian equilibria exist for 
the production games studied in chapter 3, under reasonable restrictions on 
the data of the economy. The allocation rules that can be so implemented 
are the mixtures of the equal-division and proportional rules. In contrast, 
there is no allocation rule that Nash equilibrium implements efficiently on 
our domain of economies. “Iterated best response” is a dynamic process that 
will converge to a Kant ian equilibrium under some conditions, as is true for 
Nash equilibrium as well.
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Evolutionary Considerations

Can Kant ians Resist Invasion by Nashers?

In this chapter, we examine 2 × 2 symmetric games in which Kant ian and 
Nash players meet each other repeatedly and play a game. The question 

is whether Kant ian players can resist invasion by Nash players.
We assume there is a population, fraction v of whom are Kant ian opti-

mizers, and fraction 1 − v of whom are Nash optimizers (henceforth, Nash-
ers). At each date, individuals from this population are randomly paired and 
play a game. The fitness of each group is equal to the average payoff of the 
members of that group. The population is stable when the fitness of both 
Kant ian and Nash players is the same. If the fitness of Nashers is greater 
than the fitness of Kant ians for all fractions v, then Nashers drive Kant ians 
to extinction, and conversely.

8.1 2 × 2 Symmetric Games

We study games whose payoff matrices are given by table 8.1, where 
( , )a b ∈ℜ2, a two-dimensional set of games.

Table 8.1 The generic symmetric 2 × 2 game

X Y

X (1,1) (a,b)
Y (b,a) (0,0)

I will call X the “cooperative strategy” and Y the “noncooperative strategy.” 
We assume that the games are generic, which is here defined to mean that 
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0 1 0 1 1 2≠ ≠ ≠ ≠ ≠ + ≠a b a b, , . Define the following subsets of the (a,b) 
plane:

N b
N a
N a b a b
N a b
K

1

2

3

4

1
0
0 1 1
0 1

= <
= <{ }
= > > + >{ }
= < <{ }

{ }

, ,
,

11

2

2
2

= + >{ }
= + <{ }

a b
K a b .

We assume that when a game is played, every Nasher plays the mixed 
strategy associated with the Nash equilibrium of the game, and every Kant-
ian plays the mixed strategy associated with the simple Kant ian equilibrium 
of the game. (If there are several Nash equilibria, a Nasher randomizes 
among them.) The strategy “play X with probability p and Y with probability 
1 − p” will be denoted “p.”

Define the mixed strategies

 
p

a b
a b

q
a

a b1 12 1 1
* *

( )
, ,= +

+ −
=

+ −  (8.1)

in the case where the two probabilities so defined are in the interval [0,1].
There is a frequency of Kant ians v in the economy. At each date, agents 

are paired off and play the (a,b) game, for a given (a,b). Denote the simple 
Kant ian equilibrium of the game in question by p*(a,b) and the (or one of 
the) Nash equilibrium(a) of the game by q*(a,b); we will abbreviate these 
strategies as p* and q* when there is no confusion. Kant ians always play the 
strategy p*, and Nashers always play the (or a) strategy q*. When players are 
matched to play the game, neither can recognize the type of her opponent.

We first characterize the Nash and simple Kant ian equilibria for these 
games.

Lemma 8.1 In the (a,b) game, the NEs are:

(1,1) ⇔ ∈( , )a b N1 ,
(0,0) ⇔ ∈( , )a b N2

( , ) ( , )* *q q a b N N1 1 3 4⇔ ∈ ∪ .

In the nonempty intersections of these three regions (for example, N N1 2∩ ), 
there are multiple NEs. The SKEs are:
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( , ) ( , )
( , ) ( , )

* *p p a b K
a b K

1 1 1

21 1
⇔ ∈

⇔ ∈ .

Since K K1 2∩ = O , the SKE is always unique.
Proof.
1. Let the row player play p and the column player play q. Then the 

payoff to the row player is:

 
V p q pq p q a p qb
p q q a qb qb

( , ) ( ) ( )
( ( ) )

= + − + − =
+ − − +

1 1
1 , (8.2)

which is linear in p. Hence, the best (Nash) response of the row player, p, 
is given by:

p q q a qb
p q q a qb

= + − >
= + − <

1 1
0 1
if
if

( )
( )

.

It follows that (1,1) is an NE if and only if ( , )a b N∈ 1 and (0,0) is an NE if 
and only if ( , )a b N∈ 2.
If q q a qb+ − =( )1 —which is to say, q q= 1

*—then any p is a best response. 
Thus ( , )* *q q1 1  is an NE exactly when q1 0 1* , ,∈[ ]  which means ( , )a b N N∈ ∪3 4.

2. To compute the SKE, we maximize the symmetric payoff:

V p p p p p a p pb

p a b p b

K ( , ) ( )

( ) ( ).

= = −( ) + − =

− − + +

2

2

1 1

1 1

If 1 < a + b, this is a concave function of p, and the first-order condition 

gives the maximum— p
a b

a b
= +

+ −2 1( )
. Thus, in this case, the solution is:

p
p K

a b
=

< + <




1 1

1 1 2

*,
,

if
if

.

The second case is that 1 > a + b. Then VK is a convex function of p, and 
the solution is either p = 0 or p = 1. Check that V VK K( , ) ( )( , )1 1 0 0> , so it is 
p = 1. It follows that p = 1 is the SKE when 1 < a + b < 2 or a + b < 1, 
which is to say when K2. This concludes the characterization. ■

Definition 8.1 A pure coordination game is one in which there are mul-
tiple pure-strategy NEs, which can be Pareto ranked.

Lemma 8.2 The pure coordination (a,b) games are precisely those in 
N N1 2∩ .
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Proof. From Lemma 8.1, the games in N N a b1 2 0 1∩ = <{ } ∩ <{ }  
are pure coordination games, because they possess two pure-strategy NEs, 
(1,1) and (0,0), which are Pareto ranked. Are there pure coordination games 
whose Pareto-ranked equilibria are not the symmetric equilibria (1,1) and 
(0,0)? The answer is no. One easily verifies, using equation (8.2), that (1,0) 
is an NE if and only if a > 1, and (0,1) is an NE if and only if b > 1. There-
fore, (1,1) and (1,0) are Nash equilibria if and only if { & }a b> <1 1 , but in 
this region these equilibria are not Pareto ranked since neither payoff vector 
(1,1) nor vector (a,b) dominates the other. There is no region in which both 
(1,0) and (0,1) are both NEs. In other regions where multiple pure-strategy 
NEs exist, the equilbria are not Pareto ranked. ■

Definition 8.2 An (a,b) game is supermodular if 
∂

∂ ∂
>

2

0
V p q
p q
( , )

: that is, 
if and only if 1 > a + b.

The condition that defines supermodularity is often called strategic com-
plementarity. One might say of these games that “increased cooperation 
begets increased cooperation.”

We have:
Lemma 8.31 An (a,b) game is supermodular and possesses a mixed-strategy 

NE if and only if it is in N N1 2∩ .
Proof. From Lemma 8.1, a mixed-strategy NE exists if and only if N N3 4∪ .  

A game is supermodular if and only if a + b < 1. The intersection of these 
two conditions is { & }a b N N> < = ∩0 1 1 2. ■

To study the behavior of Nash and Kant ian players when they meet, we 
must examine each region N Kn k∩ , for 1 ≤ n ≤ 4,1 ≤ k ≤ 2. The region 
N K4 1∩  is empty. This leaves seven nonempty regions, which we name 
as in table 8.2, with their associated mixed- and pure-strategy (symmetric) 
equilibria for the two player types.

Some of these regions intersect (for example, I II∩ ≠ O ), and in these 
cases there are multiple possible outcomes.2

In a region, if Nashers play the strategy q* and Kant ians play the strategy 
p*, the expected payoff to a Kant ian player, who knows he will be matched 
with another Kant ian with probability ν and with a Nasher with probability 
1− v, is:

 
VK v v p vp p a b

v p q p q

( ) ( ) )( )( )

( )( (

* * *

* * * *

= + − +
+ + + −

2 1

1 1 )) ( ) )* *a p q b+ −1
. (8.3)
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In like manner, compute that the expected payoff to a Nasher is given by:

 
VN v v q q q a b

v q p q p

( ) ( ) ( ) ( )( )

( )

* * *

* * * *

= − + − +( )
+ + −

1 1

1

2

aa q p b+ −( )( )* *1
. (8.4)

The average payoff (that is, fitness) of Kant ians is greater than the aver-
age payoff of Nashers if and only if V VK Nv v( ) ( )> , which occurs precisely 
when:

 
Q v p q

Q v p q

( ) ,

( ) ,

* *

* *

> >
< <







0

0

if

if
, (8.5)

where Q v v a b p q q a b a( ) ( )( ) ( )* * *= − − − + − − +1 1 .
Proposition 8.4
a. For games in Region VII = { } { }a b N< ∩ < =0 1 4, Kant ians drive Nash-

ers to extinction. This is true whether Nashers play either of their symmet-
ric equilibrium strategies, q q* *{ , }∈ 0 1 .3 These games are precisely stag hunts 
(chapter 2).

b. In all other regions, either Kant ians and Nashers play identically or 
Nashers drive Kant ians to extinction.

c. Generically, there are no games in which Kant ians and Nashers play 
different strategies and coexist at stable frequencies.

Proof. We will first examine what happens for games in Regions I 
and VII.

Table 8.2 Characterization of symmetric NE strategies 
and SKE strategies in 2 × 2 symmetric games

Region number Region NE SKE

I N K1 1∩  1 p1
*  

II N K2 1∩ 0 p1
*

III N K3 1∩ q1
* p1

*

IV N K1 2∩ 1 1

V N K N2 2 1∩ \ 0 1

VI N K3 2∩ q1
* 1

VII N K N4 2 4∩ = q1
* 1
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Region I ( , ) (
( )

, )* *p q
a b

a b
= +

+ −2 1
1 .

In this case, p* < q*, so VK > VN if and only if Q(ν) < 0. Note that Q is 
linear in ν; check that Q(0) > 0 and Q(1) > 0, and so it follows that Q is 
positive on the interval [0,1] in this Region. Hence for games in this Region, 
Nashers drive Kant ians to extinction.

Region VII ( , ) ( , )* *p q
a

a b
=

+ −
1

1
Since p* > q*, Kant ians drive Nashers to extinction if and only if Q > 0 on 
[0,1]. Check that Q(0) and Q(1) are positive, and so Q is positive on the 
unit interval.

Regions II–VI
Similar analysis shows that Nashers drive Kant ians to extinction in these 
regions regardless of the value of ν.

This concludes the proof. ■
We now have:
Corollary 8.5 For the class of (a,b) games, the following four conditions 

are equivalent:
i. a < 0 and b < 1 (the stag hunt);
ii. Kant ian players drive Nash players to extinction as long as the Nash 

and Kant ian strategies are distinct;
iii. The game is one of pure coordination; and
iv. The game is supermodular and a mixed-strategy NE exists.
Proof. i ii⇔  by Proposition 8.4. i iii⇔  by Lemma 8.2. i iv⇔  by 

Lemma 8.3. ■
In words, Kant ian optimizers possess an evolutionary advantage over 

Nashers precisely when the game is one of pure coordination. (If the Nash-
ers were able to coordinate on the good equilibrium, then they and Kant-
ians would appear, in these games, to be identical.) These games are all 
ones with strategic complementarity—the property that cooperation begets 
cooperation—but strategic complementarity alone is insufficient to guaran-
tee that Kant ians drive Nashers to extinction (iv).

The evolutionary importance of the Stag Hunt game has been empha-
sized by Brian Skyrms (2004). Skyrms’s focus is on how Nash players can 
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signal to each other that they will play the Cooperative (Share) equilib-
rium—that is, he focuses on the issue of Nash equilibrium selection. It is 
easy to see that if each of us believes that the other will play Share with 
sufficiently high probability, then we will each play Share (in fact, it suffices 

that this probability is at least 
1

2
−

− +
a

a b( ) ).

Note that the prisoner’s dilemma games comprise the region 
{ } { }a b< ∩ >0 1 : Nashers drive Kant ians to extinction in the prisoner’s di-
lemma, whether it is a game where the simple Kant ian equilibrium strat-
egy is 1 or p1

* . Because Skyrms stays within the confines of Nash equilib-
rium, he has no way of getting players to play Cooperate in the prisoner’s 
dilemma, except to embed it in a repeated game.

8.2 Playing Several Games

According to Proposition 8.4, there are no (a,b) games where both Kant ian 
and Nash players exist with positive frequencies in a stable equilibrium. In 
reality, we do see stable population fractions of the two types (so I claim). 
This could perhaps be achieved if Kant ians punish Nashers. What other 
model will give this result? Suppose that at each date Nature flips a coin: 
with probability φ the population will face a pure coordination game, ( ˆ, ˆ)a b ,  
and with probability 1 − φ it will face a prisoner’s dilemma game (α,β).

We will study an example. Because ( ˆ, ˆ)a b  is a coordination game, we 
know from Corollary 8.4 that ˆ ˆa b< <0 1and . Because (α,β) is a prisoner’s 
dilemma game, we know that α < 0 and β > 1. We further assume that  
α + β < 1, so that the simple Kant ian equilibrium of the prisoner’s di-
lemma game is (X,X) or p PD*, = 1. Of course, the Nash equilibrium of the 
prisoner’s dilemma game is q PD*, = 0. The simple Kant ian equilibrium of 
the pure coordination game is p coor*, = 1. There are three symmetric Nash 
equilibria of the coordination game, q qcoor*, *{ , , }∈ 0 1 1 . We will assume that 
Nashers play q coor*, = 0 in the coordination game.

We suppose, now, for simplicity, that time is continuous. Let the fre-
quency of Nashers in the population at time t be ν(t). Denote by ˆ ( ; , )V j v a b  
the average payoff to players of type j, for j ∈{Kantian,Nasher}, if the game 
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has parameters (a,b) and the frequency of Kant ians is ν. We suppose the fol-
lowing replicator dynamics:

 ′ = −v t v t a b v t a bK N( ) ( ˆ ( ( ), , ,) ˆ ( ( ), , ,))γ V V , (8.6)

where the game realized at date t is the (a,b) game, and ˆ ( , , )V j v a b  is the 
expected payoff of a type j player if the population frequency of Kant ians is 
v  and the game is (a,b). Under replicator dynamics, the frequency of Kant-
ians in the population increases at a rate proportional to the difference in 
average payoffs of Kant ians and Nashers.

It follows that the expected value of ν′(t) is zero precisely when:

ϕγ

ϕ γ

ˆ ( ( ); ˆ, ˆ) ˆ ( ( ); ˆ, ˆ))

( ) ˆ (

V V

V

K N

K

v t a b v t a b−( ) +

−1 vv t v tN( ); , ) ˆ ( ( ); , ))α β α β−( ) =V 0
, or:

 
ϕ ϕ α β

ϕ

ˆ ( ( ); ˆ, ˆ) ( ) ˆ ( ( ); , )
ˆ ( ( ); ˆ

V V

V

N N

K

v t a b v t

v t

+ −

=

1

aa b v tK, ˆ) ( ) ˆ ( ( ); , )+ −1 ϕ α βV
. (8.7)

We therefore seek a value of ν = ν(t) such that (8.7) is true. That is, we 
assert that if the expected value of the rate of change of the population fre-
quency of Kant ians is zero, then the population is stable.

We compute, using (8.4), that:

 ˆ ( ; ˆ, ˆ) ( ) ˆ.V VN Nv a b v vb= =  (8.8)

(That is, we set q* = 0.) In like manner, we have:

 
ˆ ( ; , ) ( ) .VN Nv v vα β β= =V  (8.9)

In like manner, using equation (8.3), we have:

 
ˆ ( ; , ) ( ) ˆ( ),

ˆ ( ; , ) ( )

V V

and V

K K

K K

v v v a v

v v

α β

α β

= = + −

=

1

V == + −v vα( ).1
  (8.10)

Therefore, (8.7) can be written:

 ϕ ϕ β ϕ ϕ αvb v v a v v vˆ ( ˆ( )) ( )( ( )),+ −( ) = + − + − + −1 1 1 1   (8.11)

which solves to give:

 v
a

a b
=

− − −( )
− − − + − − −

ϕ ϕ α
ϕ ϕ α ϕ ϕ β

ˆ

ˆ ( ) ˆ ( )

1

1 1 1
. (8.12)
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The numerator of this expression is positive, and so v ∈( , )0 1  if and only if:

 1 1> + −ϕ ϕ βˆ (b ) . (8.13)

Since b̂ < >1 1andβ , expression (8.13) is true if φ is sufficiently close to one.
Thus, there is a stationary state in which Nashers and Kant ians coexist in 

the population, and play different strategies, if (8.13) holds, and the popula-
tion frequency of Kant ians at this state is given by (8.12). Is the stationary 
point stable? This will be the case if any small deviation from the stationary 
state is self-correcting; the condition for this is:

 dv t
dv

v t
′ < ′ =( )

( )0 0at . (8.14)

To be precise, in the situation where either the prisoner’s dilemma or pure 
coordination game may be played, we have:

′ = + −( )
−

v t V v a b V v

V v

K K

N

( ) ˆ ( ; ˆ, ˆ) ( ˆ ( ; , )

ˆ ( ;

γ ϕ ϕ α β

γ ϕ

1 )

ˆ̂, ˆ) ( ˆ ( ; , )a b V vN+ −( )1 ϕ α β)

and so, substituting in the values for the V̂ J, we compute that:

 
dv t

dv
a b

′ = + − + − − <( )
(( ˆ ˆ ) ( )) ,γ ϕ ϕ α β( )( +1 1 1 0   (8.15)

where the inequality holds if φ is sufficiently close to one, or if α + β < 1. 
Thus, the stationary state is stable with replicator dynamics, when the pure 
coordination game occurs sufficiently frequently.

To summarize:
Proposition 8.6 Suppose that the population play the pure coordina-

tion game ( ˆ, ˆ)a b  with probability φ and the prisoner’s dilemma game (α,β) 
with probability 1 − φ. Suppose that the population frequency of Kant ians 
is governed by replicator dynamics and that Nashers play their pure-strategy 
equilibrium Y in the pure coordination game. Then there is a stable popula-
tion with both Nashers and Kant ians if φ is sufficiently close to one.

8.3 Conclusion

In games of pure coordination, Kant ians drive Nashers to extinction. 
These are games with strategic complementarity, so cooperation begets 
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 cooperation. In such games, Kant ians can survive without punishing those 
ex post who play the noncooperative strategy Y. Indeed, the advantage to 
cooperating in these games is sufficiently strong that Nashers do not survive, 
even though they are not punished for playing autarchically.

But if invasion by Nash players is a threat, and our result shows it will 
be if the game is not a pure coordination game, then Kant ians, in order to 
survive, must learn either to recognize Nashers and to change their play ac-
cordingly or to punish them ex post. Punishment ex post is properly targeted 
when one knows that an opponent who plays Y must be a Nasher, and this 
is the case when the simple Kant ian equilibrium is the pure strategy X. This 
is the case in a class of prisoner’s dilemma games: see Proposition 2.2. If 
such games are prevalent, then we can expect that, if Kant ians survive, they 
will have learned to punish Nashers. For otherwise, if that kind of prisoner’s 
dilemma game is typical of real life, we would not observe Kant ian behav-
ior. In laboratory games, it is usually the case that it is impossible to identify 
the type of one’s opponent, and one sees, ubiquitously, that noncooperators 
are punished by cooperators, in games where the Kant ian equilibrium is to 
cooperate with probability one. Indeed, Robert Boyd and colleagues (2003) 
provide an argument based on group selection for how “altruistic” punish-
ment can evolve.4 They conclude that “group selection can maintain altru-
istic punishment and altruistic cooperation over a wider range of parameter 
values than group selection will sustain altruistic cooperation alone” (3533).

Corollary 8.5 suggests that we should see only Nashers or only Kant ians, 
not the populations of mixed types that comprise reality. One explanation 
of the coexistence of both Nashers and Kant ians is that the members of the 
population play several kinds of game. If the population plays both pure co-
ordination games and prisoner’s dilemma games—and if pure coordination 
games occur sufficiently often—then there are stable populations where 
both kinds of player coexist, even if Kant ians do not punish Nashers who 
play noncooperatively. Hence, it is possible that there is an evolutionarily 
stable equilibrium where both types of player exist, even absent punishment 
(or, one might say, absent consistent punishment).

Samuel Bowles and Herbert Gintis (2004) give the following example 
of the failure of cooperation. Farmers in the Indian village of Palanpur can 
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plant their seeds early or late. The farmers are caught in a bad Nash equilib-
rium, planting late. It’s a bad equilibrium because the harvests are relatively 
small with late planting. However, if a (sole) farmer deviates from the late 
planting equilibrium and plants early, the birds will converge on his plot 
and eat his seed. It is also a symmetric Nash equilibrium to plant early: if 
all do this, the birds will take relatively few seeds from each plot, and the 
farmers enjoy a more abundant harvest than if all planted late. The early 
planting equilibrium Pareto dominates the late planting equilibrium. This 
is a pure coordination game, and the simple Kant ian equilibrium is that all 
plant early. But lacking the Kant ian optimization ethos—perhaps due to 
insufficient trust in others—Palanpur is stuck in the bad Nash equilibrium. 
Perhaps there are other communities facing a similar environment where 
farmers trust one another and all plant early.

In contrast, Christopher Boehm (2012) describes a band of !Kung bush-
men who hunt for game by spreading their large nets at the edge of the 
forest. Women and children beat the bushes in the forest, scaring the game, 
which run into the nets. One day, Cephu secretly places his net closer to 
the forest than the nets of the other hunters and catches a large fraction of 
the game. Over the next few days, he is criticized by others, and ostracized. 
He is threatened with expulsion from the band. Soon, he takes the game he 
caught and shares it with the others. He cries and swears not to misbehave 
again. The question we must ask is whether Cephu is one of a small num-
ber of Nashers in a community that consists mainly of Kant ians or whether 
every one is a Nasher, kept in line by the threat of expulsion from the com-
munity as a punishment for noncooperative behavior. According to Boehm’s 
account, the punishment does not occur immediately. It takes time for one 
hunter to raise his criticism of Cephu. It does not appear as if the first one to 
speak out against Cephu has a responsibility to do so and would have been 
punished by others had he failed to speak out. It does not appear from the 
account that his speaking out is part of a Nash equilibrium in a multistage 
game. But when he speaks out, others join the attack on Cephu.

Distinguishing the motives for cooperation between these two possibili-
ties (that everyone is a Nasher but most are deterred from selfish behavior by 
the threat of punishment, versus the situation in which only a few Nashers 
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exist but most are Kant ians) is important but difficult. It seems to me natural 
to conjecture that the first hunter who criticized Cephu is a Kant ian. He 
initiates costly punishment when others are holding back. Other hunters 
are conditional Kant ians, who undertake punishing action once the ball 
gets rolling. Boehm describes how mild punishments usually succeed in 
controlling noncooperators. But sometimes they do not, and the noncoop-
erators are either expelled from the band or, if their behavior is really costly 
to the group, executed. These responses to noncooperators in egalitarian 
bands of hunter-gatherers appear to be ubiquitous around the world.

Michael Tomasello (2016) discusses an example of competition for food 
between a male and female who are possible mates. Indeed, this game is a 
stag hunt. Each would like the food for him- or herself but also has an inter-
est in keeping the other one well fed. This “interdependence,” Tomasello 
writes, induces them to share food.

But Tomasello’s argument is incomplete. We can represent the payoff 
matrix of this food competition (stag hunt) game as in table 8.3.

Table 8.3 A stag hunt

Share Grab

Share (1,1) (−1,0.5)
Grab (0.5,−1) (0,0)

As we discussed in chapter 2, this is a pure coordination game: both 
(Share, Share) and (Grab, Grab) are Nash equilibria. The fact that each 
individual values the other’s welfare (that is, interdependence) is embod-
ied in the payoff matrix—each player would rather share than take all the 
food—but this alone is insufficient to guarantee that mutual sharing will be 
the result. (Share, Share) is, indeed, a Nash equilibrium, but so is (Grab, 
Grab). However, the unique simple Kant ian equilibrium is (Share, Share), 
and Corollary 8.5 tells us that there is an evolutionary advantage to being a 
Kant ian in a world in which this kind of game is played. Interdependency 
alone is insufficient to explain why individuals in this situation may almost 
always play (Share, Share). It is not a mystery why Kant ians may have sur-
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vived, given their evolutionary advantage over Nashers in these pure coor-
dination games.

We now observe that modifying the stag hunt game by injecting altru-
ism explicitly in players’ preferences does not assure that Nash players will 
play the simple Kant ian equilibrium, (Share, Share). Suppose that altruism 
takes this form: each player maximizes his payoff in the original stag hunt 
matrix, plus a positive multiple λ of the other player’s payoff. The payoff 
function for the row player, over a mixed-strategy profile (p,q), is:

V p q pq p q p q

p
q

R ( , ) { ) ( )( ) ( ) ( )

(

= + + − − + − −

=

1 1
2

1 1
1
2

3
2

λ λ λ

11
2

1
2

+ + −



 + 1 −λ λ λ) ( )q

.

Therefore, p = 1 is a best response to q if and only if 
3
2

1
2

1 0
q

( ) .+ + −



 ≥λ λ

 

It follows by symmetry that (1,1) is a Nash equilibrium if and only if 

1
2
3

1 2
1

≥ −
+





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( / )λ
λ

, which is true for all positive values of λ. However, (0,0) is 

a Nash equilibrium if and only if q = 0 satisfies 
3
2

1
2

1 0
q

( ) ,+ + −



 ≤λ λ

 that 

is, if and only if λ ≤ 2. Thus, even if each player weights the other player’s 
payoff at twice the weight she puts on her own payoff, Nash players can be 
trapped in a (Grab, Grab) equilibrium.
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n i n e

Alternative Approaches to Cooperation

9.1 The Traditional Approach

The traditional neoclassical approach to explain cooperation is to model it 
as a Nash equilibrium in a repeated game where players are self-interested 
but will be punished by others if they fail to play the “cooperative” strategy. 
Since punishment is postulated to be costly to the punisher, it must also be 
the case that those who fail to punish noncooperators are themselves pun-
ished by others in the next round of the game. Cooperation by all players 
comprises a Nash equilibrium only if the game has an infinite or unknown 
number of stages. For if there were a known last stage T, then at stage T − 1, 
players would fail to cooperate, because no rational self-interested player 
would punish those noncooperators at stage T. Hence cooperation unravels.

As I said earlier, I find this explanation of cooperation unconvincing as a 
general explanation of the many examples of cooperation that we observe. 
My objection is intuitive: I cannot believe that examples of human coopera-
tion are maintained solely through the fear of punishment. It is much more 
reasonable, in my view, to think that many people have internalized the 
norm of cooperation, and they would cooperate, absent punishments. As I 
wrote in chapter 2, a given culture or society may possess a catalog instruct-
ing its members how to behave in many situations, and it is known that 
deviations from the instructions may incur punishment. Eventually, people 
learn to generalize rules from the catalog. Some may generalize and be-
come Nash optimizers: play the cooperative solution only if there is a threat 
of punishment and otherwise maximize your own utility. But others will 
generalize to Kant ian optimization: take the action I would like all to take.

Punishments are needed to keep the autarkic optimizers (the Nash play-
ers) in line. Indeed, the literature is full of examples of repeated games with 
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a known number of stages (T) in which cooperation occurs at the early 
stages (at least), although the subgame perfect Nash equilibrium of the re-
peated game with self-regarding preferences is a complete failure of coop-
eration. Moreover, when punishment is possible, a large fraction of players 
cooperate for the whole game—and those who fail to cooperate at stage  
T − 1 are often punished by others at stage T, even though this is inconsis-
tent with autarkic optimization (see, for example, Fehr and Gintis 2007).

Herbert Gintis (2000) denotes the cooperation that is enforced by pun-
ishment “weak reciprocity,” and he contrasts this with his own theory of 
“strong reciprocity.”

9.2 Strong Reciprocity

Gintis (2000) proposes that “a strong reciprocator is predisposed to cooper-
ate with others and punish non-cooperators, even when this behavior can-
not be justified in terms of self-interest, extended kinship, or reciprocal al-
truism” (169). More recently, he and Samuel Bowles write: “We commonly 
observe that people sacrifice their own payoffs in order to cooperate with 
others, to reward the cooperation of others, and to punish free-riding, even 
when they cannot expect to gain from acting in this way. We call the prefer-
ences motivating this behavior strong reciprocity” (2011, 20).

Gintis often speaks of the propensity to take actions that are not Nash- 
optimal responses in a game as altruistic. He is using the term in the sense 
that biologists use it: any action that an individual member of a species takes 
that helps others at a cost to itself is considered altruistic, regardless of the 
cause of the action. As I have noted, psychological altruism is what econo-
mists typically mean by the term—that an individual’s preferences assign 
positive value to the welfare of others, and hence these costly actions that 
help others are motivated by an intent to help. Because Gintis uses the term 
in its biological sense, he denotes any action that objectively helps others at 
a cost to oneself as being the consequence of maximizing non-self-regarding 
preferences. But this does not follow. I may punish a noncooperator because 
I am offended that he has broken a norm—to behave cooperatively—not be-
cause I care about the welfare of others. Equating such motivations with hav-
ing altruistic preferences in the psychological sense is, I believe, incorrect.
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In contrast, the preferences of players in all chapters of this book except 
chapter 5 are self-regarding, yet nevertheless the Kant ian equilibrium typi-
cally involves cooperation. I achieve this by asserting that players use an op-
timization protocol that is not Nash’s, and that doing so is motivated not by 
psychological altruism but by understanding that, in a situation of solidarity, 
players must “hang together or hang separately.” I do not object to calling 
this a moral code. Because Gintis does not consider the option of varying 
the optimization protocol, he must explain cooperation by saying that play-
ers have non-self-regarding preferences. There is a moral norm in my story, 
but it is not modeled as an argument of preferences but rather induces the 
choice of optimization protocol.

Is this a distinction without a difference? I believe not. The evidence 
for my claim is that the theory of strong reciprocity does not tell us how 
cooperation is achieved except in very simple cases, where the coopera-
tive strategy profile is obvious. In contrast, the theory of Kant ian optimiza-
tion is explicit about the optimization program of each player and hence 
can define a concept of equilibrium even in “complex” games such as 
the production economies that we have employed to study common-pool 
resource and free-rider problems. In particular, players may possess differ-
ent preferences. The cooperative equilibria, for example, in production 
economies that I called “fishing” economies, where the allocation rule is 
proportional, are far from being ex ante obvious. They are, however, mul-
tiplicative Kant ian equilibria with standard, self-regarding preferences. In 
contrast, in chapter 6, I showed that to achieve these Pareto-efficient al-
locations as Nash equilibria of a game where players have extended pref-
erences over the entire allocation is mathematically possible but uncon-
vincing, since it would require a theory of how players adopt the “right” 
non-self-regarding preferences. For those extended preferences are in gen-
eral not given by any simple social welfare function whose arguments are 
the players’ utilities.

Ernst Fehr and Gintis (2007) advocate strong reciprocity to explain the 
results of experiments with a public-good game. The are N players. Each is 
endowed with an amount of resource Y. Each can contribute any amount 
0 ≤ ≤y Yi  to a common pot. The pot is multiplied by a number M by the 
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experimenter, where 1 < M < N. This expanded pot is then divided equally 
among all players. Thus, the payoff to a player i is:

 
Y y

M
N

yi j
j

− + ∑ .
 

(9.1)

The Nash equilibrium (where the strategies are {yi}) in the one-shot game 
is that all players contribute zero. Since the game is symmetric, it is appro-
priate to look at the simple Kant ian equilibrium. Each player, under the 

simple Kant ian protocol, maximizes Y y
M
N

Ny Y M y− + = + −( )1  under 

the constraint 0 ≤ y ≤ Y, and the solution is y = Y because M > 1.
The one-shot game is, however, not the one that Fehr and Gintis (2007) 

describe but rather a repeated game with two treatments—either with or 
without the option to punish those who fail to cooperate. The experimental 
result is that, without the possibility of punishment, cooperation is quite 
high in the beginning stages but deteriorates by the last stage (10) to very lit-
tle. With the possibility of punishing noncooperators, cooperation becomes 
virtually complete by the last stage, and some players in the last stage punish 
those who failed to cooperate in the penultimate stage.

How do I explain the tendency for “altruistic punishment” in one-shot 
games (such as the ultimatum game) or in the last stage of a repeated game? 
In chapter 8, I observed that in prisoner’s dilemma games Kant ian players 
would be driven to extinction if they did not learn to punish noncooperators 
who are present in their population. Thus, it’s likely that the tendency to pun-
ish must have evolved if we are to observe cooperation in mixed populations.

Suppose that one wishes to rationalize cooperation in the one-shot pub-
lic-good game of Fehr and Gintis (2007) by psychological altruism. Suppose 
that players append to the payoff function in (9.1) a utilitarian social welfare 
function, so that player i maximizes:
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i1 1( )α . It therefore follows that the Nash equilib-

rium of this game is:
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The values for the Fehr-Gintis experiment are M = 2, N = 10. Thus, altru-
ists would have to have αi > 0.8 in order to play fully “cooperatively.” This 
strikes me as unreasonably high as a credible explanation of cooperation.

9.3 Conditional Cooperation

In reality, I think that there are very few individuals who always use the 
Nash protocol or who always use the Kant ian protocol. Most people are 
conditional Kant ians. As I’ve said, Jon Elster says that these people are be-
having in a quasi-moral way. I propose that in many real cases, each person i 
has a threshold, qi, and will optimize using the Kant ian protocol if and only 
if she observes that fraction qi of the relevant population (set of players) is 
cooperating. A typical cumulative distribution function of thresholds in a 
population is plotted in fig. 9.1.

In the case of fig. 9.1, the stable behavior is that fraction q* of the popula-
tion will play the cooperative strategy. For suppose that fraction q < q* were 
cooperating; then the fraction who desire to cooperate, given cooperation 
at level q, is greater than q, so q will increase. A similar argument shows that 
no value q < q* is stable.

In fig. 9.2, there are three equilibrium cooperation frequencies, q1
*, q2

*, 
and 1. Equilibrium q1

* is stable—a slight displacement from it will induce a 
dynamic returning to q1

*. But q2
* is unstable. If a shock causes the number 

of cooperators to fall, the new equilibrium will be at q1
*. If, perchance, a 

shock increases the frequency of cooperation, the new equilibrium will be 
at q* = 1.

In many situations of solidarity, trust must be established to build co-
operation. Often, there is a small core of individuals who are saints—their 
threshold is q = 0. In small communities, trust may be established via the 
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common knowledge assumption, as discussed in chapter 2. But what about 
large groups? In fig. 9.3, I have drawn a distribution function of thresholds 
where fraction f of the population are saints. Saints induce others, whose 
thresholds are strictly positive, to cooperate. Cooperation builds as those 
who are increasingly skeptical join—their trust of others increases as they 
see others joining the movement. Eventually, at q*, the limit is reached. 
For the game of recycling, q* is now quite high in many cities, even though 
there is scarcely any punishment or ostracism of those who fail to recycle. 
For the voting game, q*varies across countries.

Of course, the dynamics described here can describe conditional strong 
reciprocators as well as conditional Kant ians.

9.4 Rabin and the Kindness Function

Matthew Rabin has proposed an explanation of cooperation, which, I think, 
could provide microfoundations for Herbert Gintis’s strong reciprocity. A 

Figure 9.3
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relatively simple description of the approach is found in Rabin (2004). 
Strictly speaking, the approach is not a special case of Nash equilibrium, 
because players’ actions depend not only on others’ actions but on their 
beliefs about others’ motives. Roughly speaking, players wish to be gener-
ous to other players who, they think, are motivated by being kind to them, 
and they wish to punish players who, they think, are motivated by being 
unkind to them. This produces extended utility functions, where arguments 
incorporating these behaviors are included. A fairness equilibrium is then 
defined as what Rabin (2004) describes as “the analog of Nash equilibrium 
for psychological games” (305).

I have three reservations about fairness equilibrium. My first reservation 
is that, when all is said and done, fairness equilibrium involves autarkic 
reasoning, as Rabin says when he writes that it is the analog of Nash equi-
librium in psychological games. I return to my deepest motivation for the 
Kant ian approach, which is that I think a fundamentally different kind of 
optimization protocol is needed to explain cooperation. Lest this reserva-
tion be viewed as too demanding or radical, let me remark that Kant ian 
optimization is within the genre of what Jon Elster calls methodological 
individualism. That is, it provides an explanation of cooperation at the level 
of individual choice. A truly radical critique would argue that cooperation 
is an “emergent” phenomenon that cannot be explained at the individual 
level, a view to which I do not subscribe.

My second reservation is that fairness equilibrium assumes considerable 
sophistication on the part of players. It is required that higher-order beliefs 
match actual behavior. Thus, a player’s payoff depends not only on the strat-
egy profile but on his beliefs about the other player’s strategy choice, and 
his beliefs about the other player’s beliefs about his strategy choice. Now the 
complexity of reasoning required could be invoked to explain why coopera-
tion is difficult to establish in reality; but I would rather say that cooperation 
is prevalent in reality, and a simpler explanation would be more convincing.

My third reservation is that it is unclear how the theory could be extended 
to more complex economic environments than 2 × 2 games. As with strong 
reciprocity, it appears to require an ex ante conception of what constitutes co-
operative (or kind or fair) play. As I have been at pains to establish, it is often, 
in real life, not clear what the cooperative action is. In the fishing  economy, 
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how can I decide whether another fisher’s labor supply is being kind or un-
kind to me? Rabin’s concept of reciprocating to the kindness of others may 
not be well defined in the production economies we have studied.

9.5 Homo moralis (Alger and Weibull 2013)

Ingela Alger and Jörgen W. Weibull (2013) propose a model in which agents 
are randomly matched in pairs, from an infinite population, and play one-
shot games, where strategies are chosen from an abstract (compact, convex) 
strategy space X. The “material payoff” to a player is a function π(x,y) of the 
strategy profile, where the function π varies across players. However, the 
utility function of the player is:

 u x y x y x xκ κ π κπ( , ) ( ) ( , ) ( , )= − +1 , (9.3)

for some κ ∈[ ]0 1, . Here is the authors’ interpretation of (9.3):

It is as if homo moralis is torn between selfishness and morality. 
On the one hand, she would like to maximize her own payoff. 
On the other hand, she would like to “do the right thing,” that 
is, choose a strategy that, if used by all individuals, would lead to 
the highest possible payoff. This second goal can be viewed as an 
application of Kant’s (1785) categorical imperative, to “act only 
on the maxim that you would at the same time will to be a uni-
versal law.” Torn between these two goals, homo moralis chooses a 
strategy that maximizes a convex combination of them. If κ = 0, 
the definition of homo moralis coincides with that of “pure selfish-
ness,” or homo oeconomicus. At the opposite extreme, κ = 1, the 
definition of homo moralis coincides with that of “pure morality,” 
or homo kantiensis; irrespective of what strategy the other party 
uses (or is expected to use), this extreme variety of homo moralis 
will use a strategy in argmax ( , )

x X
x x

∈
π . (2276)

The focus of their article is the study of when agents with preferences like 
Homo moralis can survive invasion by other agents. Under stipulated condi-
tions, including assortative matching of players in the 2 × 2 games, they 
argue that such agents can successfully resist invasion. The equilibrium in 
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the game played by two players (with preferences of this sort) is a Nash equi-
librium (actually, Bayesian Nash). So the Kant ian aspect of the model is 
embedded in the utility function of (9.3), not in the optimization protocol.

To compare this approach to mine, let’s begin with the case when the 
two players are identical and when they are both type Homo kantiensis—
that is, κ = 1. Then it is trivial to observe that (x*,x*) is a Nash equilibrium 
of the game where each maximizes π(x,x), where x* is the (unique) maxi-
mum of π(x,x). (We have observed this earlier in Proposition 6.1.) But the 
similarities between the two approaches disappear when we look at players 
of different types.

When player types are different, I have argued, simple Kant ian equilib-
rium, which corresponds to Homo kantiensis, is the wrong way to model 
cooperation. We must replace it with multiplicative or additive or some 
other “Kant ian variation.” Let’s write down the definition of Nash equi-
librium corresponding to (9.3) and multiplicative Kant ian equilibrium in 
terms of best-response functions or correspondences. For traditional Nash 
 equilibrium,  using the notation of Alger and Weibull, the best-response 
functions are:
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For Alger-Weibull equilibrium (minus the Bayesian part), the best-response 
functions are:
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. (9.5)

For multiplicative Kant ian equilibrium, the best-response functions are:

 
�

�

β π

β

1 1 1 1

2
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x y r x r rx ry

x y r
r

= =

=

where
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r
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. (9.6)

For the three cases, an equilibrium is a strategy pair (x*,y*) such that:

 
( , ) ( ( ), ( )) ( , ) ( ( ), (* * * * * * *x y y x x y y x∈ ∈β β β β1 2 1 2

or ˆ ˆ **

* * * * * *

))

( , ) ( ( , ), ( , )),

or

x y x y x y∈ � �β β1 2  (9.7)
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respectively. The key difference between the first two cases and the third is 
that the first two cases use a best-reply function (or correspondence) that is 
a mapping X X→ , whereas Kant ian equilibrium uses a mapping defined 
X X2 → . (If there were n players, the best-reply correspondences for Nash 
equilibrium are mappings X Xn− →1 , and the best-reply correspondence for 
Kant ian equilibrium is a mapping X Xn → .) This apparently small formal dif-
ference, however, is key: for it expresses the idea that a Kant ian player thinks 
of a counterfactual where all players vary their strategies in the same way.

In my view, the Alger-Weibull approach is still wedded to the idea that 
cooperation can be thought of as a noncooperative (Nash) equilibrium, 
and this is fundamentally different from the view I advocate, that we must 
conceptualize cooperation as involving a fundamentally different kind of 
optimization. For a graphical presentation of the difference between (9.4) 
and (9.6), recall fig. 3.1. Kant ian optimizers imagine a counterfactual that 
lies in the same ray, whereas Nash optimizers think of counterfactuals lying 
on different rays.

9.6 Surveys and Interviews of Players

In 2014, the Innovation Sample of the German Socio-Economic Panel, 
known as SOEP-IS, included several questions about recycling. I summarize 
the responses here.1 Of the 1,495 people who responded, 96 percent (1,435) 
said that they recycle plastic and paper. Those who recycle gave the reasons 
for recycling that are tabulated in table 9.1. The choices were fixed (close-
ended question), and respondents could choose more than one reason.

Table 9.1 German social survey: close-ended reasons to recycle

Reason Number

1. Every little bit counts 811

2. It’s what a person should do 1,016

3. I would feel guilty otherwise 461

4. I’d like everyone to recycle 466

5. It keeps the house neater 464

6. People in my neighborhood do 175

7. Waste collection charges are cheaper 374
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The clearest Kant ian reasons are the second and fourth reasons. The 
first reason could be thought of as a Nash response, where even the mar-
ginal contribution of the individual to a green environment is greater than 
the personal cost of recycling. The fifth reason is Nash. The seventh re-
sponse could be interpreted either as Kant ian, if reducing waste-collection 
charges is a public good to which everyone should contribute by recy-
cling, or as a confused answer, if the respondent believes that her own 
recycling will lower her charges. Certainly, the responses are consistent 
with a large fraction of Kant ian optimizers, although there can be many 
interpretations.

The 4 percent of respondents who do not recycle provided the reasons 
listed in table 9.2 (again, respondents could give more than one reason).

Table 9.2 German social survey: close-ended reasons to not recycle

Reason Number

1. Would not make a meaningful difference 21

2. No reason to recycle 13

3. I don’t care 11

4. Cost of recycling not worth it 2

5. I don’t have the time 12

6. People in my neighborhood don’t recycle 17

7. Waste collection charges aren’t much higher if I don’t 9

Most of these reasons can be explained by Nash optimization.
To the question “How many people do you think recycle in your neigh-

borhood?” 75 percent of respondents answered two-thirds or more, with 
48 percent responding 95 percent. Among those who do not currently re-
cycle, one-half said that they would do so if a higher fraction of people 
recycled. This is consistent with these 28 people being conditional Kant ians 
with high thresholds (or having perceptions of a low participation rate).

In 2014, I conducted a small survey using Amazon’s Mechanical Turk. 
To the open-ended question “Why do you recycle?” I classify the responses 
as reported in table 9.3. (Several respondents gave more than one reason.)
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The first reason is certainly not Nash; it could be Kant ian. It is similar 
to the fifth reason, although “being a part of making a difference” is more 
clearly Kant ian. The fifth reason is also called indicative of an expressive 
utility from participation. Reason 8 is clearly altruistic, although it is in-
consistent with Nash reasoning, if the value I create for future generations 
(properly discounted?) is less than the cost to me.

To the question “Why do you not recycle?” almost all answers were of 
the form that recycling is too costly. One person, with the clearest Nash 
consciousness, wrote “Because my action would not make a meaningful 
difference.”

Close-ended responses to the question “Why do you pay your taxes fairly 
honestly?” are tabulated in table 9.4.

Table 9.3 Mechanical Turk survey: open-ended reasons to recycle

Reason Number

1. Help the environment, save the earth, etc. 25

2. It’s easy to do 13

3. Dislike of waste 11

4. Save money, lower my trash bill 7

5. Be a part of making a difference 7

6. It’s the right thing to do, duty 5

7. Feel guilty if I didn’t 2

8. For future generations 1

Table 9.4 Mechanical Turk survey: close-ended  
reasons to pay taxes honestly

Reason Percentage

1. Fear of being caught, paying a fine 52%

2. Country needs the revenue 20%

3. It’s what everybody should do 58%

4. Not worth the worry if I didn’t 44%

5. What if nobody paid their taxes? 12%
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Reason 1 is Nash. (There is a large literature arguing that the probability 
of being fined and the sizes of fines are far too small to generate the degree 
of tax compliance that is observed in the United States. See, for example, 
Frey and Torgler 2007.) Reasons 2, 3, and 5 are consistent with Kant ian 
reasoning.

In some treatments, respondents were given an open-ended question 
about tax compliance. The responses are given in table 9.5.

Table 9.5 Mechanical Turk survey: open-ended  
reasons to comply with taxes

Reason Number

1.  It’s the right thing to do; duty as citizen; don’t want to cheat the 

government; part of social contract; everyone does their fair share 16

2. Fear of audits; not worth risk 28

3.  Support my government; pay for essential services; tax money 

goes to good use

7

4. Because it’s the law 5

Reasons 1 and 3 seem Kant ian; reason 2 is Nash.
Answers to the close-ended question “Why do you vote in national elec-

tions?” are given in table 9.6.

Table 9.6 Mechanical Turk survey: closed-ended reasons to vote

Reason Percentage

1. Duty of a citizen 68%

2. Like to participate in choosing 57%

3. My vote could make a difference if close 46%

4. It doesn’t take much time 19%

5. If I didn’t vote, why should anyone? 8%

Reason 1 is a social norm, which could be interpreted as Kant ian. Reason 2 
is the expressive reason for voting, in which participation has a value. Rea-
son 3 is Nash. Reason 5 is Kant ian.
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To the open-ended version of this question, people responded with rea-
sons tabulated in table 9.7.

Table 9.7 Mechanical Turk survey: open-ended reasons to vote

Reason Number

1.  Every vote makes a difference; want my voice to count; have 

a say 20

2. It’s my duty; people died for the right to vote 4

3. Voting gives me a right to complain 3

4.  Although one vote may not make a difference, if everyone 

believed this . . . 1

The vast plurality in table 9.7 seem to view voting as expressive (reason 1). 
Only reason 4 is clearly Kant ian. Both the close-ended and open-ended 
questions in the Mechanical Turk survey indicate a small fraction of Kant-
ian optimizers in regard to voting.

Stefan Penczynski of the University of Mannheim has conducted labora-
tory experiments with public-good games where players consist not of single 
agents but of teams of two. Before the game is played, the members of each 
team discuss with each other (but not with other teams) how much their 
team should contribute to the public good. Then one member from each 
team is randomly chosen to play the game. The purpose of this setup is to 
elicit from individuals the reasons behind their strategy choice. Here is a 
summary of the reasons that players gave in their pre-play communication 
with their team partners.2

1. “If everybody contributed the maximum, that would be the 
most rational and best decision for all. However, I doubt that 
everybody will do so; that is why, in this case, I would rather 
keep everything and not be stupid at the end.”

2. “I just hope that most people follow the principle of maximiz-
ing total welfare. Obviously, we could just all our points [sic] 
and then hopefully get all the Taler [German dollars] from 
the other teams. But I am human in my decision.”
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3. “It makes sense here to think strategically because one’s own 
Taler are not as valuable as the ones the other teams send 
over. Hopefully the other teams think strategically as well.”

4. “Hold everything or pass everything? It would be better to 
pass everything, if the other teams think this way as well.”

5. “I would pass everything as this way the total payout is 
 increased. I assume that the others will pass everything as 
well.”

6. “I think we should rely on the others. Holding Taler leads to 
much too small an amount. That is the trick: If everybody 
goes along and passes the Taler, we can leave with more 
money. And I think we should be optimistic here.”

7. “I trust that the other team sends us everything as well—this 
way everybody gets the maximal amount! We have to trust 
though; without this a market does not work.”

8. “So basically the money amount for everybody will be maxi-
mized when everybody passes all Taler. When everybody 
thinks like that, we would earn 5 Euro. But there will be those 
that hope to get everything donated without doing something 
for it themselves. That would not be good, but I hope that we 
meet nice people that give us everything as well.”

9. “I am afraid that few will play cooperatively in order to raise 
the total profit of all participants. It would be ok for me, how-
ever, to pass 40 Taler in order to make the most of the avail-
able money for all.”

What appears ubiquitous in these discussions is the willingness to play 
the Kant ian strategy. The doubts raised are caused by a lack of trust. None 
of the players expressed the Nash argument. Several players rationalized 
the cooperative strategy by referring to the maximization of total profit. As 
I pointed out in chapter 6, this ambiguity always exists in symmetric games 
with identical payoff functions: that is, the Kant ian equilibrium of the game 
with self-interested preferences is also a Nash equilibrium of the game that 
maximizes the total payoff.
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9.7 The Bosch-Domènech and Silvestre Experiments

Antoni Bosch-Domènech and Joaquim Silvestre (2017, in press) conducted 
a series of experiments with students at the University of Pompeu Fabra. In 
the first experiment, respondents were asked to choose “Circle” or “Square.” 
The results are presented in table 9.8.

Table 9.8 Bosch-Domènech and Silvestre experimental payoffs

Temperature in  
Istanbul < 16°C

Temperature in  
Istanbul > 16°C

You choose Circle You earn €10 You earn €1

You choose Square You earn €15 You earn €6

Clearly, Square is a dominant strategy, delivering a higher payoff no matter 
the temperature in Istanbul. (Payoffs were made after the temperature was 
checked.)

Next, players were matched randomly to play the one-shot game with a 
payoff matrix. The results are shown in table 9.9.

Table 9.9 Bosch-Domènech and Silvestre second-game payoffs

The other player  
chooses Circle

The other player  
chooses Square

You choose Circle You earn €10 You earn €1

You choose Square You earn €15 You earn €6

The results: in the first game, everyone chose “Square,” but in the sec-
ond game 28 percent chose “Circle.” That is, respondents play differently 
against other human beings than how they play against an impersonal, 
natural “opponent.” Respondents, in a word, do not treat the other player 
parametrically in the second prisoner’s dilemma game, while they do treat 
Nature parametrically. Participants who played Circle in the prisoner’s di-
lemma game were asked to choose from among the following reasons for 
their choice:
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1. I chose at random;
2. It is the choice that I’d like everybody to make in this 

situation;
3. I like to help others even at a cost to myself;
4. In this manner, our joint earnings are higher; or
5. Taking advantage of others is not right.

The most frequent response was (4); the second most frequent was (2). As 
I have discussed, it is difficult to distinguish between maximization of total 
payoff and Kant ian optimization in symmetric games. In the Istanbul game, 
participants universally explained their unanimous choice of Square by its 
dominant-strategy property, showing that they understood this well. Clearly, 
for some reason, 28 percent of participants did not focus on this property in 
the second game. Indeed, one can conjecture that in the second game, par-
ticipants who chose Circle assumed a degree of joint intentionality among 
players, for choosing Circle would be pointless (even punishing) if the op-
ponent were to choose the dominant strategy.

The authors propose that participants who chose Circle were motivated 
by the desire to “do the right thing.” I have argued earlier that in symmetric 
games, doing the right thing means doing what I’d like everyone to do. It 
must be emphasized that the prisoner’s dilemma game in this experiment 
was one-shot, with no possibility of punishing noncooperators.
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t e n

A Generalization to More Complex 
Production Economies

10.1 Economies with Several Goods

There are generalizations of the efficiency results for Kant ian equilibrium 
to economies that produce several goods.

A. Economies with a private good and a public good. A public good, y, is 
produced with a production function H; a private good, x, is produced with 
a production function G. Let (Ei,Li) be the labor vector supplied by agent 
i to private and public good industries. Individuals have preferences repre-
sented by u x y E Li i i i( , , )+ . An allocation is feasible if:

x G E y H LS S S≤ ≤( ), ( ) .

One may check that an interior feasible allocation is Pareto efficient if and 
only if:

 ∀ ′ = −i G E
u
u

S
i( ) 3
1

1

 and ′ = ′ ∑G E H L
u
u

S S
j

j( ) ( ) 2

1

, (10.1)

where the utility functions are evaluated at x y E Li i i, , +( ).
Definition 10.1 A K× equilibrium at an allocation rule X for the private 

good is a feasible allocation (x,E,y,L) such that xi = Xi(E) and y = H(LS) 
such that:

(i) given E, no agent would prefer to rescale the vector L, and
(ii) given L, no agent would prefer to rescale the vector E.
Proposition 10.1 If X = XPr, then any interior K× equilibrium (for this 

economy) is Pareto efficient.
Proof.
1. The argument that condition (ii) implies that ∀ ′( )= −i G E

u
u

S
i

i
3

1

 is just 
as before.
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2. Condition (i) means that:
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0′ + = ⇒ ′ = ′ ⇒ ∑ == ′G , (10.2)

using step 1. The last step uses the fact that LS > 0. But this is the final 
(Samuelson) condition for Pareto efficiency from (10.1). ■

The general approach here is clear. Because Pareto efficiency in this 
economy has a new condition associated with the public good, there must 
be two optimization conditions for each agent. This approach can also be 
applied more generally. For example:

Proposition 10.2 Suppose that there are m private goods where good i is 
produced by a production function Gi of labor, and there are q public goods, 
each produced by a production function Hj of labor. Suppose that the alloca-
tion of each private good is proportional to the labor workers expended in its 
production. Suppose that no worker would like to rescale the labor vector in 
any industry. Then the allocation (if it is interior) is Pareto efficient.

We could also have some goods allocated by equal division to those who 
labored in the industry and some goods allocated proportionally and adjust 
the definition of Kant ian equilibrium accordingly. Of course, private goods 
must always be allocated using a mixture of equal and proportional division, 
in order for these generalizations to hold.

Perhaps a somewhat more interesting example is the example of an econ-
omy with workplace quality, presented in section 3.10.

10.2 Production with Many Occupations

With a few exceptions, such as those in section 10.1, the strategies that 
players employ in the games in this part of the book are unidimensional. 
In particular, in the production economies studied, production is a func-
tion of a single kind of efficiency labor or effort. In this section, I show 
that there are limited generalizations of Kant ian optimization to the case 
where production is a function of several kinds of labor. Thus, I now assume 
that the production function G maps ℜ+

l  into ℜ: there are l types of labor/ 
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effort, or occupations. An aggregate vector of labor supplies will be denoted  
E = (E1,…,El); each agent will supply only one kind of labor, but there may 
be many agents supplying each kind of labor. We denote by l(i) the type 
of labor that agent i supplies: thus, l i l( ) ∈{ }1 2, ,...,  for every i. Although 
the labor vector is multidimensional, each player’s strategy continues to be 
unidimensional.

Conceptually, it seems clear why we must maintain the restriction of 
unidimensionality for the individuals’ strategies (effort supplies). The idea 
behind Kant ian optimization is that there is a natural conception of what it 
means to take the same kind of action. If actions were multidimensional, it 
would be difficult to conceptualize what the “same kind of action” would 
be. Here, we show that, as long as individuals each have unidimensional 
effort strategies, even if those strategies are drawn from different sets (in the 
sense of involving different occupations), players can cooperate by using 
the familiar multiplicative and additive conceptions of Kant ian variation. 
There will, however, be restrictions on the production functions G required 
to derive efficiency results.

We now suppose that there are n workers, each with a concave, differen-
tiable utility function ui(x,E), where x is consumption and E is the amount 
of the unique type of effort/labor that agent i is capable of supplying. The 
types of labor that agents can supply are specified by a (single-valued) func-
tion l n l: , ,..., , ,...,1 2 1 2{ } → { }. Thus, a feasible allocation of effort is a vector 
( , ,..., )( ) ( ) ( )E E El

n
l n

1
1

2
1 2  in ℜ+

n, where the subscript indexes the worker and the 
superscript indexes the occupation. The associated vector of aggregate labor 

supplies is E = (E1,…,El), where E Ej
i
l i

i s t j l i

=
=

∑ ( )

. . ( )

 for j = 1,2,…,l. The vec-

tor of consumptions x = (x1,…,xn) must satisfy x Gi
i

≤ ( )∑ E .

Definition 10.2 A production function G l: ℜ → ℜ+ + is homothetic if 
it is differentiable and for all pairs of components j,k there is a constant γjk 
such that, for all positive α and for all vectors E ∈ℜ+

l , G Gj jk k( )α γ αE E= ( ),  
where Gj denotes the jth partial derivative of G.

Indeed, we have γ jk
j

k

G

G
= ( )

( )E
E . If l = 2, this is just the familiar condition 

that along any ray (emanating from the origin), the slopes of the isoquants 
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of G are constant. More generally, the tangent hyperplanes to the isoquants 
of G are parallel along any ray in l− space.

Definition 10.31 A production function G : ℜ → ℜ+ +
2  is C- 

homothetic along a path θ θ1 2
2,( ) ∈ℜ++  if it is differentiable, and for 

any vector E = ( ) ∈ℜ+E E1 2 2, , the slopes of isoquants of G are con-
stant along expansion paths E E1

1
2

2 0+ +( ) ≥αθ αθ α, , . In other words, 
G E E G E E1

1
1

2
2 2

1
1

2
2+ +( ) = + +( )αθ αθ γ αθ αθ, ,  for any nonnegative α, 

and so the constant γ has the value G
G

1

2

E
E

( )
( )

.

I denote this property “C-homotheticity” because it was first used by 
John S. Chipman (1965), but for utility functions.2 Consider the concave 
production function G E E e eE E1 2 2 2

1
1

2

,( ) = − −− −θ θ . Note that the slope of 

the isoquant of this function at (E1,E2) is −
−

−

θ
θ

θ

θ
1

2

1
2

2
1

e
e

E

E
, which is constant if 

θ θ2
1

1
2E E k− = , or along expansion paths of slope θ

θ
2

1

 in the (E1,E2) plane.
Proposition 10.4
a. Let l = 2, let G be twice differentiable, and let H be the Hessian matrix 

of G. Then G is homothetic if and only if, for all E = (E1,E2):

 E E
G

G
1 2 2

1

0,( )
−











=HH . (10.3)

b. G is C-homothetic along a path (θ1,θ2) if and only if, for all E = (E1,E2):

 θ θ1 2
2

1

0,( ) −









=HH
G

G
. (10.4)

Proof. In case a we have 
d

d
G G

α
α γ α( ( ) ( ))2 1 0E E− = . This expands to 

(10.3), when we substitute for the constant γ its value of G
G

2

1

( )
( )
E
E

. A simi-

lar argument produces case b, expanding the equation 
d

d
G E

α
αθ( ( )2

1
2+ −

γ αθ αθG E E1
1

1
2

2 0( , ))+ + = . ■

We next define the conception of a proportional allocation for these 
economies.
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Definition 10.4 An allocation is proportional if for all players i, 

x
G E

G E
Gi

l i i
l i

j
j

j

l=
( )

( )
( )

( )

=
∑

( ) E

E
E

1

. That is, each player receives a share of output equal 

to the share of the value of his effort in the total value of effort, where each 
effort is evaluated at its marginal-product “wage.” An allocation is a propor-
tional solution if it is proportional and Pareto efficient.

This definition is taken from Roemer and Silvestre (1993).
Definition 10.5 An allocation is generalized equal division if for all play-

ers i, x
G

G
Gi

l i

j
j

j

l=
( )

( )
( )

=
∑

( ) E

E
E

λ
1

, where λ j i l i j= ( ) ={ }# | .

Note that for l = 1, proportional allocations are indeed the proportional 
allocations of chapter 3, and likewise, the generalized equal-division alloca-
tion is an equal-division allocation of the earlier type. Note also that the sum 
over all players of the output shares in Definition 10.2 is one.

To define Kant ian allocations, we first write down the game that is in-
duced in these economies when the allocation rule is the proportional rule. 
The payoff function for player i is given by:

 V E E E u
G E

G
i l l

n
l n i l i i

l i

( , ,..., ) (( ) ( ) ( ) ( )
( )

1
1

2
2 =

( )E

jj
j

j

i
l i

E
G E

( )
( ), )( )

E
E∑ . (10.5)

Definition 10.6 An effort vector ( , ,..., )( ) ( ) ( )E E El
n
l n

1
1

2
1 2  is a K× equilibrium 

for the game {Vi} defined by (10.5) if:

 ( ,..., )(argmax ( ,..., )( ) ( )∀ = =
≥

i n V rE rE
r

i l i
n
l n1 1

0
1 )). (10.6)

Now consider economies that allocate output according to generalized 
equal division. The induced payoff functions of the game are:

 �V E E u
G

G
Gi l

n
l n i l i

j
j

j

l( ,..., ) (
( )

( )

( ) ( ) ( )
1

1

1

=

=
∑

E

Eλ
(( ), )( )E Ei

l i . (10.7)

Definition 10.7 An effort vector ( , ,..., )( ) ( ) ( )E E El
n
l n

1
1

2
1 2  is a K+ equilibrium 

for the game �Vi{ } defined by (10.7) if:
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 ( ,..., )(argmax ( ,...,
( )

( )∀ = +
≥−

i n V E r E
r E

i l
n

i
l i

1 1
1� ll n r( ) ) )+ = 0 . (10.8)

We can now state the main result:
Proposition 10.5
a. Let G be homothetic. Let ( , ,..., )( ) ( ) ( )E E El l

n
l n

1
1

2
2  be an effort allocation 

such that Ei
l i( ) > 0 for all i, that is a K× equilibrium for the game {Vi}. Then 

the induced allocation is Pareto efficient in the economy (u1,…,un,G).
b. Let G be C-homothetic along the expansion path (λ1, λ2). Let 

( , ,..., )( ) ( ) ( )E E El l
n
l n

1
1

2
2  be a K+ equilibrium for the game �Vi{ }. Then the induced 

allocation is Pareto efficient in the economy (u1,…,un,G).
Thus, under different conceptions of homotheticity on production, if 

each worker supplies only one kind of labor, then positive multiplicative 
Kant ian equilibria are efficient in proportional economies, and any additive 
Kant ian equilibrium is efficient in an equal-division economy.

The hypothesis on the production function in part b seems very restric-
tive: G must be C-homothetic on an expansion path that depends upon the 
skills of the workers—since λj is the number of workers capable of supplying 
labor of type j. Let us apply this condition to the Chipman production func-
tion stated above, which can be written:

G E E E E( , ) exp( ) exp( )1 2 2 1 1 1 2 21= − − − −λ λ λ λ ,

where E
Ej

j

j=
λ

, which is the average labor supplied by workers who supply 

labor of type j. The simplest example would be a production process where 
each worker supplies his own unique kind of labor: then the values of λj are 
both one, and the expansion path along which the isoquants have constant 
slope is the 45° line.

Proof. (we let l = 2)
Part a. Let us suppose that worker i supplies labor of type 1. The condi-

tion defining K× equilibrium is then:

 ( ,..., ) (
( )

( )
( )

( )

∀ =
+=

i n
d
dr

u
G r E

G r E Gr

i l i i
l i

1
1 1

1
2

E
E (( )

( ), )
r E

G r r iE
E E2

1 0= , (10.9)

which expands, for a player i who supplies labor of type 1, to:
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 (10.10)

where G and its derivatives are evaluated at E, and the gradient vector 
∇ =G G Gj j j( , )1 2  for j = 1,2. (Thus, HH = ∇ ∇( , ,)G G1 2 .) The sufficient condi-
tion for Pareto efficiency, because the solution is interior, is u G ui i

1
1

2 0+ = ,  
which states that i’s marginal rate of substitution equals her marginal pro-
ductivity. Noting that ∇ ⋅ ≡ +G G E G EE 1

1
2

2, and dividing (10.10) through 
by the positive number E1

1, we see that (10.10) reduces to the efficiency con-
dition if the second term in the coefficient of ui

1 is zero; that is, we need to 
show that:

( )(( ) ) ( ( ) ( . )G E G E G G E G E G1
1

2
2

1 1
1

1
2

2+ ∇ ⋅ = ∇ ⋅ + ∇E E E ,

which is equivalent to:

 ( )( )

( )

G E G E G E G E

E G G E G E E G
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1
2

2
11

1
12

2

1
1 11

1
12

2 2
2

+ + =
+ + (( )G E G E21

1
22

2+
. (10.11)

The reader can check that condition (10.11) reduces to condition (10.3), 
which is true by the hypothesis that G is homothetic, and Proposition 10.1. 
This proves Part a.

Part b. The allocation is an additive Kant ian equilibrium for the general-
ized equal-division economy if and only if:
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Verbally, condition (10.12) states that when each player considers the coun-
terfactual “add a constant r to everyone’s effort,” the optimal constant she 
would choose is r = 0. For a player i for whom l(i) = 1, this expands to:
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 (10.13)
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Again, the efficiency condition is u G ui i
1 1 2 0+ =  for worker i. Condition 

(10.13) reduces to the efficiency condition exactly when the second term in 
the coefficient of ui

1 is zero—that is, when:

 ( )( )

(( ) (

λ λ λ λ
λ λ λ

1
1

2
2

1
11

2
12

1
1 2

11
1 2

122

G G G G

G G G

+ + =
+ + λλ2 2

22) )G
. (10.14)

The reader can check that condition (10.14) is equivalent to condition:

( , ) ,λ λ1 2 2

1

0HH
−









=
G

G

which is condition (10.4) for the expansion path (λ1,λ2). By the hypothesis 
of C-homotheticity for this expansion path, Part b is proved. ■

Consider this application of Proposition 10.5a. Suppose that capital 
is a factor of production: let it be the first factor, so E1 denotes the in-
put of capital and E2,…,En now denote the contributions of the various 
kinds of labor. Suppose that there are some individuals who possess capi-
tal but no labor, and they, too, have utility functions ui(x,E) where the 
provision of capital by them to production involves a disutility (perhaps 
it reduces security). According to Proposition 10.5a, if G is homothetic, 
then a positive multiplicative Kant ian equilibrium is Pareto efficient. In 
this case, G1(E) is the marginal product of capital. In this equilibrium, 
every individual, whether the provider of capital or the supplier of labor, 
receives a share of the product proportional to his contribution, evaluated 
at its marginal-product price. If G exhibits constant returns to scale, then 
this allocation is identical to the Walrasian equilibrium allocation—that 
is, each receives a share of the product equal to her contribution evaluated 
at marginal- product prices, because the sum of contributions evaluated 
at marginal-product prices exhausts the total product. But if G exhibits 
decreasing returns, then the allocation is not Walrasian, for it allocates 
the entire product in proportion to contributions, so evaluated. Contrast 
this with the Arrow-Debreu model, in which pure profits, which exist at 
Walrasian equilibrium with strictly concave production, are allocated to 
shareholders, while providers of capital (and labor) each receive a share 
of the product equal to (rather than proportional to) their contributions 
(always evaluated at marginal-product prices).
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10.3 Summary

My tentative inference from these results is that it is difficult to extend the 
theorems on the efficiency of Kant ian equilibrium to games where the ef-
forts of individuals are qualitatively different—meaning that, in production 
economies, they enter into production in different ways. This is not neces-
sarily a drawback of the Kant ian approach, for the mathematics may be 
telling us something about cooperation as such—namely, that it is difficult 
to decentralize cooperative behavior in an efficient manner when contribu-
tions of individuals are qualitatively different.
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e l e v e n

International Cooperation to Reduce 
Global Carbon Emissions

This chapter takes a slight detour from Kant ian optimization and uses 
an even simpler concept than simple Kant ian equilibrium: the con-

cept of a unanimity equilibrium. In the latter, every agent agrees, at equi-
librium, on what the value of a public good or bad should be. This idea is 
familiar from Lindahl equilibrium, and indeed the two models I present in 
this chapter can be viewed as applications of Lindahl equilibrium. I present 
them here because they are examples of cooperative economic behavior. 
(See Erik Lindahl 1919, reprinted in English in Musgrave and Peacock 
[1958, 168–176].)

The chapter’s title refers to the first example, presented in sections 11.1–
11.4. The second example, presented in section 11.5, is a familiar one from 
public economics, of a downstream firm that suffers from the pollution of 
an upstream firm.

11.1 Introduction

Excessive emission of greenhouse gases may be the most pressing example 
of a global public bad in our time. The problem cries out for international 
cooperation. In my view, the main value of the United Nations Climate 
Change Conference held in Paris in December 2015 was to build trust 
among nations, for as I have emphasized, trust is a precondition of coop-
eration. At the conference’s end, 196 nations agreed by consensus to the 
Paris Agreement, informally committing themselves to reductions in car-
bon emissions.
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From the viewpoint of Nash equilibrium, the Paris Agreement is just 
cheap talk, for there is no enforcement structure with monitoring and pen-
alties to render it the case that the commitment of each nation is a Nash-
best response to what other nations have committed to do regarding green-
house gas emissions reductions.

In this chapter, I present a general equilibrium model that provides a 
way for countries to decentralize a globally Pareto-efficient solution to the 
carbon emissions problem. At equilibrium, there is unanimous agreement 
among countries concerning the level of the global emissions cap. In equi-
librium, decentralized choices of country emissions sum up to the global 
cap, and the allocation of emissions, capital, and consumption is Pareto 
efficient.

11.2 The Economic Environment and Pareto Efficiency

There are n countries. Country i operates a single firm, whose production 
function is Gi(K,E), where K is capital and E is the country’s carbon emis-
sions. Gi is increasing and concave in its arguments. All firms produce a 
single consumption good, called x. Labor is implicit in the production func-
tion. Capital is purchased on an international capital market, but labor is 
immobile: hence, the entire labor supply of country i is allocated to the 
firm of the country. We therefore do not display explicitly the dependence 
of the technology on labor, nor will we display labor in the utility function 
of each country.

There is a representative agent in each country i, with utility function 
ui(xi,ES), where xi is the consumption of country i’s representative agent, Ei is 
the emission level of country i, and E ES i≡ ∑  is global emissions. Utility is 
increasing in xi and decreasing in ES. We assume that these agents care about 
the future citizens of their country and that they have internalized this in 
their preferences through the negative dependence of utility on global emis-
sions. Indeed, the form of the utility function permits citizens to care about 
the welfare of humankind generally, not just their own country’s citizens.

Country i has a capital endowment of Ki. It is easiest to assume that capi-
tal does not depreciate. (It also has a labor endowment, but as I remarked, 
we need not display that explicitly.)
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A global allocation {( , , ) | ,..., }x K E i ni i i = 1  is feasible if:

 

x G K E

K K K

i i i i

i S i

≤

≤ ≡
∑∑

∑∑
( , )

. (11.1)
By standard methods, one shows the following:1

Fact. An interior global allocation is globally Pareto efficient if and only 
if conditions (11.1) hold with equality and:

(i) for all i,j, G Gi j
1 1=

 (ii) for all i, G
u
u

i
j

j
j

n

2
2

11

= −
=
∑ . (11.2)

Thus, efficiency requires equalization across countries of both marginal 
products, as well as a Samuelson condition relating the marginal product of 
emissions to the marginal rates of substitution of the representative agents.

11.3 Unanimity-Walras Equilibrium in Global Emissions

There are three prices (p,r,c), for the good, capital, and a unit of emissions, 
respectively. Each country’s firm will maximize profits, which are given by 
pG K E rK cEi( , ) − −  if the firm “demands” (K,E).2 Of course, profits include 
neoclassical profits and labor income. We need not distinguish between 
these, since workers in each country offer their labor inelastically to the 
firm and all profits net of capital costs and emissions payments redound to 
the citizenry.

Capital will be supplied on the global market by the citizenry that owns it.
When a firm emits carbon in amount Ei, it pays cEi into a global fund 

and these revenues will be distributed to the global citizenry, according to a 
share vector (a1,…,an), nonnegative and summing to one. Thus, the value 
of the global fund will be cES, and the income of country i from its demo-
grant will be aicES.

Consider the following “game,” whose n players are the representative 
citizens of each country. The strategy space for each player is ℜ+. Given 
a capital and emissions demand by its firm (Ki,Ei), prices, and a vector3 
a a an n= ∈∆ −( ,..., )1 1, the payoff function for player i is:

 
�V E K E a u

rK pG K E rK cE a ci S i i i i
i i i i i i i

( ˆ ; , , ) (
( , )= + − − + ˆ̂

, ˆ ),
E

p
E

S
S

 (11.3)
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where ÊS is a proposal, by county i, for global emissions. The specification 
of the argument of the function �Vi reminds us that the strategy is a real 
number ( ˆ )ES —the country’s proposal for the global emissions cap—which 
is conditioned on a particular value of (Ki,Ei,ai) as well as, of course, on the 
three prices. This “game” is degenerate, in the sense that agents’ payoffs are 
defined, not on a strategy profile, but on a single number.

Note that the first argument in the utility function on the right-hand 
side of (11.3) is the amount of the good that country i can purchase given 
its income, which comes from three sources: its capital income, its profit 
income, and its demogrant.

Definition 11.1 A unanimity equilibrium of the game { }�Vi  defined in 
(11.3), given the vector ( , , , , , ,...., , )p c r K E K En naa 1 1 , is a number ÊS ∈ℜ+such 
that, for all i, ÊS maximizes �Vi( )⋅ .

The ethical appeal of the unanimity equilibrium is obvious—if the coun-
tries believe that the share vector a is fair. (I will discuss the fairness issue be-
low.) A unanimity equilibrium can be viewed as both a Kant ian equilibrium 
and a Nash equilibrium, in a trivial sense.

We now define the full equilibrium concept.
Definition 11.2 A global unanimity-Walras equilibrium with emissions 

is a price vector (p,r,c), a share vector aa = ∈∆ −( ,..., )a an n1 1, demands for capi-
tal and emissions (Ki,Ei) by each firm-country i, a vector of consumptions 
(x1,…,xn), and a total supply of global emissions ÊS, such that:

• For each i, ( , ) argmax ( , )
,

K E pG K E rK cEi i

K E

i= − − ;

• The number ÊS is a unanimity equilibrium of the game { }�Vi  
defined in (11.3), given prices, {Ki,…,Kn}, (Ei,…,En) , and a;

• for all i, x
r K K pG K E cE a cE

p
i

i i i i i i i S

= − + − +( ) ( , )
); and

• x G K Ei i i i= ∑∑ ( , ), K Ki∑ = , and Ê ES i= ∑ .

In words, countries maximize profits taking prices as given, and this involves 
choosing a net supply of capital to the global capital market, a demand for 
the consumption good, and a demand for emissions (or, one might say, 
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emissions permits). Countries each choose their desired global level of 
emissions, given prices, according to their preferences, and in equilibrium 
all countries agree on the global supply of emissions, and all markets clear, 
including the market for emissions. Note, especially, that there are no ex 
ante limits on emissions and no ex ante allocation of emissions credits to 
countries. The citizens supply the permission to the countries in toto to 
emit. The agreement among countries specifies that firms may not emit un-
til it is verified that total emissions will be no greater (in fact equal to) the 
citizenry-determined total supply of emissions. It is important to note that 
the shares in the global fund (a1,…,an) emerge endogenously as part of the 
equilibrium.

Proposition 11.1 If utility functions and production functions are dif-
ferentiable and concave, any global unanimity-Walras equilibrium is Pareto 
efficient.

Proof.
1. By profit maximization, we have:

 ∀ = =i
r
p

G
c
p

Gi i
1 2, . (11.4)

2. It follows from the fact (11.2) characterizing Pareto efficiency that con-
dition (i) holds. What remains to prove in order to verify condition (ii) is 
that:

c
p

u
u

i

i= −∑ 2

1

.

3. A unanimity equilibrium of the game {Vi} satisfies:

 ( ) ˆ (
( ) ( , ) ˆ

, ˆ )∀ − + − +
i

d
dE

u
r K K pG K E cE a cE

p
E

S
i

i i i i i i S
S == 0 . (11.5)

Compute this says:

for all i, u x E
p

a c u x Ei i S i i i S
1 2

1
0( , ˆ ) ( ) ( , ˆ )+ = ,

which can be written:
 for all i, a c

p
u
u

i i

i= − 2

1

. (11.6)

Summing the last equations over i proves the claim, by step 2. ■
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11.4 Existence of Unanimity-Walras Global Emissions Equilibrium

I demonstrate existence under an assumption that is simplifying but prob-
ably not necessary:

Assumption QL. All utility functions are quasi-linear of the form 
u x E x h E hi S i S i( , ) ( ),= − convex and increasing, and −hi satisfies the Inada 
conditions.

Assumption QL is reasonable in this context: it says that countries wish to 
maximize national income net of the costs of global warming.

Proposition 11.3 Under Assumption QL and standard concavity assump-
tions on the functions Gi including Inada conditions, a unanimity-Walras 
equilibrium with global emissions exists.

As a prelude to proving Proposition 11.3, we introduce a correspondence 
that will be used in all the existence proofs of Part II of the book.4

Let ∆ −n 1 be a price simplex of dimension n − 1 for an economy with n 
markets. Let z n n: ∆ → ℜ−1  be the excess demand function of the economy, 
which obeys Walras’s Law: for all p p p∈∆ ⋅ =−n z1 0, ( ) . Define the corre-
spondence Φ : ∆ → ∆− −n n1 1 as follows. On int ∆ −n 1 (the interior of the sim-
plex), define:

 Φ( ) { | ( ) ( ) , }p q p q p q q= ∈∆ ⋅ ≥ ⋅ ′ ′ ∈∆− −n nz z1 1for all . (11.8)

On ∂∆ −n 1 (the boundary of the simplex), define:

 Φ( ) { | }p q p q= ∈∆ ⋅ =−n 1 0 . (11.9)

Suppose that p* is a fixed point of Φ. It must lie by definition in int ∆ −n 1 .  
Thus, z( )* *p p⋅ = 0, and the definition of Φ on int ∆ −n 1 tells us that z(p*) ≤ 0.  
It follows that z(p*) = 0, for if z(p*) had a negative component, Walras’s Law 
would be contradicted.

Therefore, all markets in the economy clear at p*.
Proof of proposition 11.3.
1. Let ( , , ) intp r c ∈ ∆2. By profit maximization, assuming that the Inada con-

ditions hold for the production functions, we have the demands for capital and 
emissions in each country, (Ki,Ei) satisfy pG K E c pG K E ri i i i

2 1( , ) , ( , ) .= =
2. The total supply of emissions by the n countries ÊS must satisfy:
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for all i, d
dE

r K K pG K E cE a cE
p

h E
S

i i i i i i S
i S

ˆ
( ) ( , ) ˆ

( ˆ )
− + − + −







= 0.  (11.10)

This says:

 
a c
p

h E
i

i S= ′( ˆ ) for all i, (11.11)

where the ai must sum to one. Define functions ai( )⋅  by the equations:

a X
c
p

h Xi i( ) ( )= ′ .

Obviously, ai(X) are increasing functions, and since hi′(0) = 0, and the hi′ 
increase without bound, there is a unique value z* such that a zi( )* =∑ 1. 
Let ˆ *E zS ≡ . Thus, at these values of {ai} there is unanimity among countries 
regarding the global supply of emissions.

3. We have now defined the demands and supplies of capital, emissions, 
and the good at any interior price vector, and the vector a. Check that Wal-
ras’s Law holds:

p x G r K K c E Ei i i i i S( ) ( ) ( ˆ ) .− + − + − =∑∑∑∑∑ 0

This uses the fact that ai =∑ 1 ; the {xi} are defined by x
rK a cE

p
i

i i i S

= + +Π ˆ
,  

where Πi are the profits of the country i’s firm at the given prices.
Define the excess demand function z(p) = ( ( ), ( ), ( ))∆ ∆ ∆x K ESp p p , 

where∆ = − ∑∑x x Gi i( )p , ∆ = −∑K K Ki i( ) ( ),p  and ∆ = −∑E E ES i S( ) ˆp . 

Walras’s Law holds by step 3.
4. Construct the correspondence Φ as in (11.8) and (11.9) above. At a 

fixed point of Φ, all markets clear. The shares {ai} are given by step 2 above.
5. It is left to verify that the conditions of Kakutani’s Fixed Point Theorem 

hold. Φ is convex-valued on int ∆2 and upper hemicontinuous there by the 
maximum theorem. It is obviously convex valued on ∂∆2, and a standard 
argument, omitted here, shows that it is upper hemicontinuous there. Thus, 
a fixed point exists. By the discussion before the proof of the theorem, the 
fixed point is the required equilibrium. ■

Remark. Without the assumption of quasi-linearity, the determination of 
the {ai}, in step 2 of the above proof, is not so easy.
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I return to the issue whether countries will consider the share vector a 
that emerges as part of the equilibrium to be fair. We can immediately see 
from equation (11.11) that the shares of the climate fund received by coun-
tries are proportional to their marginal climate damages from global emis-
sions. Thus, countries more vulnerable to climate change, in the sense that 
their marginal damages are large at every level of global emissions, receive 
greater compensation. This reflects a degree of fairness. A more careful dis-
cussion of this issue would require understanding how the global emissions 
level at equilibrium reflects the data of the problem.

The property of the vector a just remarked upon, however, is unlikely to 
suffice as a fully attractive conception of fairness, for that value, like equilib-
rium prices, will reflect the distribution of endowments, technologies, and 
damage functions, and it would be difficult to establish the claim that the dis-
tribution of these endowments is “fair.” Fortunately, there are more degrees 
of freedom in the allocation of global consumption. The distribution of con-
sumption can be amended by adding fixed transfers of the consumption good 
Ti for all countries, which sum zero. That is, we can write consumption as:

 x T
r K K pG K E cE a cE

p
i i

i i i i i i S

= + − + − +( ) ( , ) ˆ
, (11.12)

where Ti is the net level of the consumption good transferred to country i 
from the rest of the world. If the utility functions are quasi-linear, these trans-
fers will not alter the equilibrium values of emissions or demands for capital. 
(Of course, the transfers must be feasible: no country can end up with a nega-
tive consumption, and Ti =∑ 0.) Thus, by varying the vector of transfers, we 
produce an n − 1 dimensional manifold of efficient equilibria. The political 
problem presents itself as a conflict over what the transfers should be.

This equilibrium concept decentralizes the problem, once the share vec-
tor a is announced. There is no need for a centralized decision on the allo-
cation of permits. The scheme is a version of cap and trade, where the global 
cap on emissions is set by the world’s citizenry, by unanimous agreement. 
The market for emissions permits is replaced by the requirement (agreed to 
by the community of countries) that total emissions do not exceed the sup-
ply of global emissions permits, which is the unanimity equilibrium of the 
game defined in (11.3).
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We have not addressed how the equilibrium is discovered—that is, the 
dynamics of convergence to equilibrium. This is where the prescriptive 
value of the concept of a global unanimity-Walras equilibrium becomes 
important. An international team of economists could compute the vector 
a, after consulting with countries and estimating their production and dam-
age functions. The unanimous agreement on the value of the global emis-
sions cap is the selling point. Bargaining and arguing would still enter into 
negotiations over the vector of country or regional transfers.

11.5 A Model of Unanimity Equilibrium in an 
Economy with Production Externalities

There are two firms. Concave technology G(E,B) produces both good x as 
a function of efficiency units of labor and a public bad B that is a produc-
tion input for the firm. G is increasing in both arguments. Technology H 
produces a good y as a function of labor and B: H(E,B). Here, H is increas-
ing in its first argument and decreasing in B. Thus, the G firm produces the 
emissions that negatively affect production in the downstream H firm.

There are n citizens; citizen i owns shares (θ1i,θ2i) in the two firms. 
Workers supply labor to the two firms: worker i’s firm-specific supplies are 
(E1i,E2i); we write the total labor supplied by worker i as Ei and denote 
E t E E t Ei i i i i i1 2 1= = −, ( ) . Citizens have concave utility functions u x y Ei i i i( , , ),  
increasing in the first two arguments and decreasing in the third.

Pareto efficiency is characterized by the solution of this program:

 

max ( , , )
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The dual Kuhn-Tucker conditions reduce to the following equations:
(1) u G u H1

1
2 2

1
2 0+ = ;

(2) for all i, u
u

u
ui i

1
1

1

2
1

2

= ; and

(3) for all i, 
u
u

t G
u
u

H t
i

i
i i3

1
1

2
1

1
1 1 1 0+ + − =( ) .

These conditions, in addition to the material balance conditions stated 
as constraints in program (11.4), are necessary and sufficient conditions for 
an interior solution to be Pareto efficient.5

We now define an equilibrium with externalities for a market economy 
with these data.

Definition 11.3 An equilibrium with externalities is a price vector (p,q,b) 
for the goods x,y, and B, and nonnegative numbers (a1,…,an) summing to 
one, demands for goods (xi,yi) by consumers, supplies of labor (E1i,E2i) by 
workers, supplies of goods X and Y by the two firms, a demand for the pol-
lutant B1 by the G firm, demands for labor D1,D2 by the two firms, and a 
(supply) permit to pollute by the citizenry of Bc, such that:

(i) Profit maximization of the G firm:

( , ) ( , ) ,

( , )

D B pG D B wD bB

X G D B

1 1

1 1

maximizes and− −
= aand Π1 1 1 1≡ − −pG D B wD bB( , ) .

(ii) Profit maximization of the H firm:

D D qH D B wD

Y H D B

2 1

2 1

maximizes over and, ( , ) ,

( ,

−
= )), ( , )Π2 2 1 2≡ −qH D B wD .

(iii) Utility maximization of consumers, who choose (xi,yi,Ei) to maximize

u x y E

px qy wE a bB

i

i i i i

( , , ) subject to

+ ≤ + + +θ θ1 1 2 2 1Π Π .

(iv) Unanimity of equilibrium among consumers in the choice of the 
pollutant: Given (D1,D2), consumers unanimously choose B = B1 to maxi-
mize the function:

 V B pG D B wD bB qH D B wD ai i i i( ) ( ( , ) ) ( ( , ) )= − − + − +θ θ1 1 1 2 2 2 bbB.

(v) Market clearing: X x Y y D E D ES S S S= = = =, , ,1 1 2 2 .
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Thus, the polluting firm chooses the amount of pollutant B1 to maximize 
profits, facing a price for the pollutant inter alia. The revenues collected from 
the pollution tax are distributed to consumers according to shares ai that are 
determined in equilibrium. Condition (iv) states that, given prices and the 
labor demands of firms, consumers unanimously agree that B1 is the optimal 
level of pollution, where optimization maximizes each consumer’s income.

Thus, we may think of there being two kinds of regulation of the emis-
sions: through the tax paid by the polluting firm that is returned to con-
sumers as a grant, and by the necessity of unanimous agreement of society 
that the level of pollution be optimal. We can think of the equilibrium as 
decentralizing the achievement of Pareto efficiency, once the share vector 
a is specified.

We have:
Proposition 11.4 Given differentiability, equilibrium with externalities 

is Pareto efficient.
Proof.
1. Profit maximization implies:

pG D B w pG D B b qH D B w1
1 1

2
2 1

1
2 1( , ) , ( , ) , ( , ) .= = =

2. Utility maximization implies:
u
p

u
q

u
w

i i i
1 2 3= = −  for all i.

3. The first-order condition for the maximization of i’s payoff function as 
expressed in condition (iv) of the definition of equilibrium is:

θ θ1
2

2
2 0i i ipG b qH a b( ) .− + + =

Because pG2 = b, this reduces to a
qH
b

i
i

= − θ2
2 . Adding up over all i, we 

have:
b qH= − 2 .

4. Conditions (1) and (2) of Pareto efficiency are immediately implied by 
the equations in steps 1 and 2 and the last equation in step 3.

5. It remains to verify condition (3) of Pareto efficiency:

u
u

t G
u
u

H t
i

i
i i3

1
1

2
1

1
1 1 1 0+ + − =( ) ? .



S
N
L
170

Kantian Optimization in Market Economies

170

Substituting 
w
p

 for H1 and 
p
q

 for 
u
u

2
1

1
1  shows that this equation is equiva-

lent to:
u
u

t
w
p

t
w
p

u
u

w
p

i

i
i i

i

i
3

1

3

1

1 0+ + − = + =( ) .?

But this is true by step 2, proving the claim. ■
It might appear that consumers need to know the technology H in order 

to find the level of B that maximizes Vi—see condition (iv) of the definition 
of equilibrium. But at equilibrium prices, this is not the case, because the 
derivative

dV
dB

qH a b b
q
p

u
u

a
i

i i i
i

i
i= + = − +θ θ2

2
2 1

2

( ),

using the fact that the Pareto efficiency holds at equilibrium, and so con-
sumers may compute the individually optimal level of B without knowing 
the firms’ technologies.

Proposition 11.5
a. Under the usual convexity conditions, an equilibrium with externalities 

exists.
b. The shares ai are proportional to θ2i. (So owners of the H firm are com-

pensated for the imposition of the pollution on their firm, in proportion to 
their ownership stakes in the firm.)

Proof.
1. Denote a price vector by p = ( , , , )p q w b . Denote the 3-simplex of prices 

by ∆3.
2. We define a mapping Φ : ∆ → ∆3 3. First, we define the map on int ∆3.  

Given p ∈ ∆int 3, compute the profit maximizing labor demands D1,D2 of 
the two firms, and the profit maximizing “demand” for the pollutant B1 by 
the G firm. These quantities exist and are unique if G,H satisfy the Inada 
conditions.

3. Define functions a B
qH D B

b
i

i

( )
( , )= − θ2

2
2

 for i = 1,…,n. Note that 

these functions are strictly increasing. By the Inada condition on H, there is 
a unique value of B such that a Bi( ) =∑ 1. Denote this value by Bs.

4. Define the income of agent i by:
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I E wE pG D B wD bB

qH D B

i i i i

i

( , ) ( ( , ) )

( ( ,

p = + − − +θ
θ

1 1 1 1 1

2 2 11 2) )− +wD a bBi s .

Now define (xi,yi,Ei) as the solution of the consumer’s utility maximization 
program, subject to the income Ii. If u is strictly concave, this solution is 
unique.

5. Define the following excess demand functions of p:

∆ = − ∆ = −

∆ = +
∑ ∑x x G D B y y H D B

E D

i i( ) ( , ), ( ) ( , ),

( )

p p

p

1 1 2 1

1 DD E B B Bi s2 1− ∆ = −∑ , ( ) .p

We show that Walras’s Law holds. We can write

p ⋅ ∆ ∆ ∆ ∆ =

+ − − − −( )
( , , , )

( , )

x y E B

px qy wE pG D B wD bBS S i 1 1 1 1 −−

−( ) − =qH D B wD bBs( , ) .2 1 2 0

using the fact that ai =∑ 1. The sum of the four negative terms in this equa-
tion comprises the total income of consumers, which equals the sum of the 
two positive terms since the budget constraints bind.

6. Denote ∆ = ∆ ∆ ∆ ∆z x y E B( ) ( ( ), ( ), ( ), ( )).p p p p p  Now define the function 
(or correspondence) Φ : int ∆ → ∆3 3 as in equations (11.8) and (11.9). By 
the argument given there, any fixed point of Φ must lie in int ∆3 , and a fixed 
point is a unanimity equilibrium. The only part of this claim that is not stan-
dard is the “unanimity” part. Condition (iv) of the definition of unanimity 
equilibrium holds at a fixed point because, by step 3 above, we have for all i:

a
qH D B

b
i

i

= − θ2
2

2 1( , )
,

which is the first-order condition for B1 to be the optimal value of the pol-
lutant level for every agent.

Since at equilibrium ∆ =E 0, we can allocate the supply of labor between 
the two firms such that, for each firm, the demand equals the supply of 
labor.

7. Hence, we need only verify that Φ is upper hemicontinuous, which is 
standard. ■
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t w e lv e

Efficient Provision of a Public  
and Private Good

A Semimarket Economy

12.1 The Model and Pareto Efficiency

Consider an economy with a private good (x), a public good (y), and labor 
(E). Citizens have concave, differentiable utility functions ui(x,y,E) of the 
usual kind. There is a private firm that produces the private good with pro-
duction function G using labor as the only input. There is a cooperative 
firm that produces the public good from labor, using production function H. 
The private firm is owned by citizens. Each citizen is endowed with ( , )Ei iθ , 
a positive amount of labor in efficiency units and a share of the private firm. 
The public-good firm will be organized along a cooperative principle.

Let E E Ei i i= ( , )1 2  be a supply of labor by agent i to Firm 1 (private) and 
Firm 2 (public), respectively. There are n citizens. A feasible allocation 
satisfies:

 
G E x H E y

i E E E

S S S

i i i

( ) , ( ) ,

( )( ).
1 2

1 2

≥ ≥
∀ + ≤

 (12.1)

Fact. An interior1 allocation in the differentiable case is Pareto efficient 
if and only if:

(A) ( )( ( )
( , , )
( , , )

∀ ′ = −i G E
u x y E
u x y E

S
i i i

i i i1
3

1

 and (B) ′
′

= −∑G E
H E

u x y E
u x y E

S

S

i i i

i i i
i

( )
( )

( , , )
( , , )

1

2

3

1

, (12.2)

in addition to the feasibility conditions (12.1), where the first two of these 
hold with equality.
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We define a notion of equilibrium that is semi-market. The private firm 
maximizes profits facing prices for the private good and labor (p,w). Citi-
zens supply labor to both the private firm and the cooperative firm. Workers 
are paid wages by the private firm but not by the cooperative firm, which 
operates outside the market. The vector of labor supplies and demands for 
the private good are conventional. But the vector of labor supplies to the 
cooperative firm must be an additive Kant ian equilibrium of a game to be 
defined.

Suppose that we are given a vector of labor supplies to the private firm 
ˆ ( ˆ ,..., ˆ )E E En

1 1
1

1=  and private-good consumptions ˆ ( ˆ ,..., ˆ )x x xn= 1 . Define a 
game among the n players with the following payoff functions:

 V E E u x H E E Ei n i i S i i( ,..., ) ( ˆ , ( ), ˆ )2
1

2 2 1 2= + . (12.3)

(Recall that E ES i

i
2 2= ∑ .)

We can now define a Walras-Kant equilibrium with a public and private 
good as follows. It consists of a price vector (p,w), an allocation of goods 
( ˆ ,..., ˆ , ˆ)x x yn1 , n effort vectors ˆ ( ˆ , ˆ )E E Ei i i= 1 2 , and a supply of the good and de-
mand for labor by the private firm ( ˆ , ˆ )X D  such that:

(a) The vector ( ˆ , ˆ )X D  maximizes Firm 1’s profits, that is, pX − wD.  
Denote these profits by Π( ˆ , ˆ )X D ;

(b) Given ( ˆ, ˆ ,...., ˆ )y E En
2
1

2 , for each i, the choice ( ˆ , ˆ )x Ei i
1  maximizes 

u x y E Ei i i i( , ˆ, ˆ )1 2+  over the budget set:

{( , ) | ( ˆ , ˆ )}x E px wE X Di i i i i
1 1≤ + θ Π ;

(c) Given ( ˆ ,..., ˆ , ˆ ,..., ˆ )x x E En n1
1
1

1 , the vector ˆ ( ˆ ,..., ˆ )E E En
2 2

1
2=  is an additive 

Kant ian equilibrium of the game V defined in (12.3) above;
(d) Markets clear: ˆ ˆx Xi =∑ , Ê Di

1 =∑ , and in addition H E yS( ) .2 =
In other words, every worker may participate in both the private and co-

operative economy; her choices in the private economy are optimal for her, 
given prices and given the labor she expends in the cooperative firm and 
the value of the public good, and the levels of participation of workers in 
the cooperative firm form an additive Kant ian equilibrium for them, given 
the consumption and labor they receive in the private/market sector. So, in 
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the private economy, workers behave as they do under capitalism, but when 
producing the public good, they optimize in a cooperative fashion.

Proposition 12.1 Any Walras-Kant equilibrium with a public and private 
good is Pareto efficient.

Proof.
1. We will assume that the equilibrium is interior for simplicity, although 

the proof extends to corner solutions.
2. By profit maximization, ′ =G E

w
p

S( )1 . By utility maximization over 

( , )x Ei i
1 , it follows that

w
p

u
u

i

i= − 3

1

, where the argument of ui is ( ˆ , ˆ, ˆ ˆ )x y E Ei i i
1 2+ .  

It follows that condition (A) of the characterization of Pareto efficiency in 
(12.2) holds.

3. By concavity, the following first-order condition characterizes the ad-
ditive Kant ian equilibrium of the game V:

for all i,

 

d
dr

V r E r E

d
dr

u x H nr E

r

i n

r

i i S

=

=

+ + =

+

0
2
1

2

0
2

( ,..., )

( ˆ , ( )), ˆ ) .E r Ei i
1 2 0+ + =

Expanding this condition we have:

 for all i, u H E n ui S i
2 2 3 0′ + =( ) . (12.4)

Using the fact that − ′ =G E u uS i i( )1 1 3, proved in step 2, we can write (12.4) as:

 u H E n G E ui S S i
2 2 1 1 0′ − ′ =( ) ( ) . (12.5)

Now, since ES
2 0> , by interiority of the equilibrium, ′H ES( )2  is well defined 

and positive; rewrite equation (12.5) as:

 ′
′

=G E
H E n

u
u

S

S

i

i

( )
( )

1

2

2

1

. (12.6)

Add conditions (12.6) over i, giving condition (B) in (12.2) of Pareto ef-
ficiency. ■

What happens if we substitute for condition (c), condition (c*)?
(c*) Given ( ˆ ,..., ˆ , ˆ ,..., ˆ )x x E En n1

1
1

1  the vector ˆ ( ˆ ,..., ˆ )E E En
2 2

1
2=  is a multiplica-

tive Kant ian equilibrium of the game V defined in (12.3) above.
We have:
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Proposition 12.2 Any Walras-Kant (multiplicative variant) equilibrium 
in which for all i Ei

2 0>  is Pareto efficient.
Proof.
1. Same step 2 in Proposition 12.1.
2. We now require:

for all i,
d
dr

u x H rE E rE
r

i i S i i

=

+ =
1

2 1 2 0( ˆ , ( ), ˆ ) ,

or: u H E
E
E

ui S
S

i
i

2 2
2

2
3 0′ + =( ) .

Again, we substitute − ′G E uS i( )1 1 for ui
3, giving:

u
u

E
E

G E
H E

i

i

i

S

S

S
2

1

2

2

1

2

= ′
′
( )
( )

.

Adding over i gives the required condition (B) for Pareto efficiency. ■

12.2 Existence of Equilibrium

We have the existence result:
Proposition 12.3 If G obeys the Inada conditions and is strictly concave, 

and the utility functions are concave and strictly quasi-concave, then an addi-
tive Walras-Kant equilibrium with a public and private good exists.

Proof.
1. Denote by ∆ the 1-simplex of prices (p,w). Define the compact, con-

vex set:

Ω = ∆ ×
=

∏[ , ].0
1

Ei

i

n

We are given ( , , ,...., )p w E En
2
1

2 ∈Ω. Define the supply of the private 
good and the demand for labor for the private-good firm by profit maximi-
zation:

( ˆ , ˆ ) argmax( ( ).
( , )

X D pX wD X G D
X D

= − =) s.t.

Denote the profits by Π( ˆ , ˆ )X D .
2. Next, define ˆ ( )y H ES= 2 , and define ( ˆ , ˆ )x Ei i

1  as the solution of:
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max ( , ˆ, )

. .

( , )

( , )x E

i i

i

u x y E E

s t

px wE p w

2 +

≤ + θ Π .

3. Define:

 for all i, r V r Ei

r E E E E E

i

i i i i i
= +

∈ − − − −
argmax ( ,....

[ ˆ , ˆ ]1 2 1 2

2
1 ,, )r En+ 2 . (12.7)

Note, by the domain over which the maximization occurs,  
r E E Ei i i i+ + ∈ˆ [ , ]1 2 0 . By strict quasi-concavity of utility, the solution of (12.7) 
for a given i is unique.
Now define for all i, Ê r Ei i i

2 2= + .
4. Note that Walras’s Law holds by adding up the budget constraints:

p x X w D Ei i( ˆ ) ( ˆ ) .− + − =∑∑ 1 0

Denote the excess demand function by:

z( , ; ˆ) ( , ),p w y x E= ∆ ∆ 1

where ∆ = − ∆ = −∑ ∑x x X E D Ei iˆ , ˆ
1 1. Recall that ( ˆ , ˆ )x Ei i

1  depends on ŷ.
Now define Φ Ω1 : → ∆  as in equations (11.7) and (11.8). That is, if 
p ≡ ∈ ∆( , ) intp w  define:

Φ1
2
1

2 2( , ,..., ) { | ( ; ( ))

(

p q q p

q

E E z H E

z

n S= ∈∆ ⋅
≥ ′ ⋅ pp q; ( )) }H ES

2 , for all ′ ∈∆ .

For p ∈∂∆, define Φ1
2
1

2 0( , ,..., ) { | }p q p qE En = ∈∆ ⋅ = .
Define Φ2

2
1

2
1

2
1

2( , ,..., ) ( ,..., )p E E r E r En n n= + + , which is single-valued.
Last, define Φ̂ Φ Φ= ×1 2, noting that Φ̂ maps Ω into itself.

5. Suppose ( , , ,..., )* * * *p w E En
2
1

2  is a fixed point of Φ̂. Then ∆ = = ∆x E0 1. 
Now it also follows from the fixed point property that for all i, ri = 0. There-
fore ( ,..., )* *E En

2
1

2  is an additive Kant ian equilibrium of the game V defined 
in (12.3). This shows that the fixed point is a Walras-Kant equilibrium with 
a public and private good.

6. It is left only to verify that Φ̂ is upper hemicontinuous and convex-
valued. Convex-valuedness is immediate, as is the upper hemicontinuity on 
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int ∆. The upper hemicontinuity of Φ̂ on ∂∆ is a standard argument that 
we skip. ■

Remark. The proof of existence of a multiplicative Walras-Kant equi-
librium should also be true but will be more delicate. This is because the 
zero vector is always a multiplicative Kant ian equilibrium of the game V, 
but we want to show the existence of a Walras-Kant equilibrium where the 
vector E2 is strictly positive (or else we lose Pareto efficiency). Doing this 
requires cutting out a small piece of the domain [ , ]0

1

Ei

i

n

=
∏  near the origin, 

and then some conditions on the derivatives of ui are needed to guarantee 
that Φ2 maps this slightly smaller domain into itself. To avoid this compli-
cation, I have elected to prove existence for the additive Kant ian version, 
which does not suffer from this problem. See, for example, the proof of 
Proposition 7.1.
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t h i r t e e n

Two Designs for Market Socialism

13.1 Introduction

The ethos of socialism is cooperation. Using markets in a socialist economy 
in a comprehensive way was first proposed in the 1930s by Oscar Lange and 
Fred Taylor (1938). Since then, many variants have been proposed. Perhaps 
the latest, at this writing, is that of Giacomo Corneo (2017), who proposes 
that the government build a sovereign wealth fund that would be invested 
in international equities, the income from which would be distributed to 
the population. In addition, a federal shareholder would be created, an insti-
tution that would purchase large equity positions in many domestic firms, 
the income from which would redound to the treasury.

What’s notable, for the present purpose, is that all designs of market so-
cialism with which I am familiar limit the “socialism” part of their propos-
als to altering the property rights in firms, with the aim of allocating capi-
tal income much more equally than it is allocated in capitalist economies. 
The two economic foundations of twentieth-century socialist experiments 
(chiefly, the Soviet Union and its eastern European periphery, and China 
until 1979) were the replacement of markets by central planning and state 
ownership of (at least) the major firms of the economy. Market-socialist 
proposals have replaced planning with markets at least to a considerable 
extent and have usually replaced state ownership of firms with some alter-
ative form that would putatively give firms the ability to maximize profits 
without egregious state interference, in order to capture the mechanism 
of the first theorem of welfare economics. The “socialist” part of these 
proposals is the socialization of a large part of the nation’s capital income.
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Although lip service is paid to cooperation, these market-socialist models 
have not included any precise cooperative protocol in their agents’ behav-
ior: to the extent that cooperation might be said to exist in the models of 
Lange and Taylor, Corneo, and many others, a set that includes my own 
earlier proposal in Roemer (1994), it must be embodied in the property 
rights envisaged for firms. In market-socialist models heretofore, agents are 
presumed to optimize in the same way that Arrow-Debreu agents optimize, 
maximizing a self-regarding preference order subject to constraints in the 
autarchic manner. I believe that this approach underplays the importance 
of the cooperative ethos that must be a key element of socialist design.

One might suppose that socialist citizens would possess preferences 
with an altruistic element in them. However, I have not seen any market-
socialist models with this property—and in any case, if an agent is small 
in the economy, it is unclear whether his having a preference order with 
an altruistic character would produce equilibria any different from one 
in which agents are entirely self-regarding. (See Dufwenberg et al. 2011.) 
After all, if an agent is small, what difference would her altruistic contribu-
tion make, and would this small contribution outweigh the personal cost 
she sustains by making it? As the reader will by now understand, I prefer 
to rely on cooperation rather than altruism as the bedrock of a socialist 
society.

Once again: the lack of a cooperative behavioral protocol in market-so-
cialist models is a serious lacuna, since the theory of socialism emphasizes 
that socialism will replace the ethos of individualism, characteristic of capi-
talism, with an ethos of cooperation. Cooperation should therefore appear 
more robustly in our models of socialism and not be limited to a new design 
of property rights. In this chapter, I embed cooperative behavior in the form 
of Kantian optimization in two models of market socialism.

In the first of these models, firms, which maximize profits, will be in part 
privately owned by citizens and in part state-owned. Citizens will choose 
their commodity consumptions by maximizing utility subject to their bud-
get constraints in the usual manner, but they will choose their labor supplies 
to firms in a Kantian manner. The state is a passive owner and uses its profit 
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share to finance firms’ capital investment. Incomes are redistributed via an 
affine tax policy. The main result—the “first theory of welfare economics 
for market socialism”—is that the ensuing equilibrium is Pareto efficient at 
any tax rate. Thus, Kantian optimization in the labor market allows us to 
separate completely the question of efficiency from that of distribution. The 
deadweight loss of taxation, so important in discussions of “equity versus 
efficiency,” evaporates.

In the second model, presented in section 13.9, I introduce Kantian op-
timization among citizens in their investment decisions but not in the labor 
market.

The first model below is somewhat more complicated than the models in 
the two previous chapters, for here I assume there are two produced private 
commodities and labor. I have chosen to introduce the complication to 
show that the usefulness of Kantian optimization is not restricted to econo-
mies with a single private commodity. It will be clear that the arguments will 
hold for economies with any number of private, produced commodities.

13.2 The Economic Environment

There are two produced private goods and a homogeneous kind of labor, 
measured in efficiency units. There are two firms, each of which produces 
one of the goods from inputs of labor and capital,1 using production func-
tions G and H, which map ℜ → ℜ+ +

2 . Worker i is endowed with Ei units 
of labor in efficiency units, and receives a profit share θil from Firm l, for 
l = 1,2. The state owns fractions θ0l of Firm l = 1,2 and is endowed with K0 
units of the capital good. Good 1 is used both for consumption and capital, 
and Good 2 is a pure consumption good. The state uses its capital to finance 
investment in the two firms, and the private agents spend their incomes on 
consumption of the two goods. Private agent i has preferences over the two 
consumption goods and labor expended (in efficiency units) represented by a 
utility function ℜ ×   → ℜ+ +

2 0,Ei . All activity takes place in a single period.
Firms are traditional—they are price takers and demand capital and 

labor and supply commodities to maximize profits. A linear tax at an ex-
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ogenous rate t ∈[ ]0 1,  will be levied on all private incomes, with the tax 
revenues returned to the population as an equal demogrant. Given their in-
comes (which consist of after-tax wages, profit income, and the demogrant) 
and their labor supply, producer-consumers choose the optimal commodity 
bundle in the classical way. However, the determination of labor supply, 
and hence of income, is nontraditional—that is to say, the worker does not 
choose his labor supply in the Nash manner. A vector of labor supplies must 
be an additive Kantian equilibrium of a game to be defined below.

13.3 The Game

Let (p1,p2,w,r) be a price vector where pl is the price of commodity l, for  
l = 1,2, w is the wage rate for labor in efficiency units, and r is the interest 
rate on capital. Let ( , )E Ei i1 2  be a labor supply vector by agent i to Firms 1 
and 2. Thus the vector of labors supplied to Firm G is E1 11 1= ( ,..., )E En , and 
the vector of labors supplied to Firm H is E2 12 2= ( ,..., )E En . Fix the capital 
levels Kl, l = 1,2, of the two firms. Define the income of private agent i at 
(E1,E2) under a linear income tax at rate t as:

 

I E E E t wE t K Ei i S S i i S

i

( , , ) ( ) ( )( ( , )1 2 1 1 1 1

2

1 1= − + − +θ

θ

Π

ΠΠ

Π

2 2 2
1

1 1
2

2 2

01 1

( , )) ( ( , ) ( , )

(

K E
t
n

p G K E p H K E

K

S S S+ + −

θ 11 1 02 2 2 2 1 2, ) ( , ) )E K E rK rKS S− − −θ Π

, (13.1)

where the profits of the two firms are defined by:

 
Π
Π

1 1 1
1

1 1 1 1

2 2 2
2

( , ) ( , ) ,

( , ) (

K E p G K E wE rK

K E p H

S S S

S

≡ − −
≡ KK E wE rKS S2 2 2 2, ) − −

 (13.2)

and ESl is the labor supplied to Firm l. The last term on the right-hand side 
of (13.1) is the value of the demogrant, equal to the per capita share of total 
tax revenues, where taxes are levied on all private incomes but not on the 
state’s income.

The income of the state is:

 I K E K E r K KS S0 01 1 1 1 02 1 2 2 1 2= + + +θ θΠ Π( , ) ( , ) ( ) . (13.3)
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That is, the state receives its share of firms’ profits plus the return on its 
investment, but this is not taxed, which explains the specification of the 
demogrant in (13.1).

Now suppose that every (private) agent were to increase her total labor by 
a constant ρ, positive or negative. Then i’s hypothetical income would be:

I E E n E n t w E

t

i i S S i( , , ) ( ) ( )

( )

+ + + −( ) = − + +
−

ρ λ ρ λ ρ ρ1 2 1 1

1 (( ( , ) ( , ( ) ))θ λ ρ θ λ ρi S i SK E n K E n

t
n

p

1 1 1 1 2 2 2 2

1

1Π Π+ + + − +

GG K E n p H K E n

K E

S S

S

1 1
2

2 2

01 1 1 1

1, ( , ( ) )

( ,

+( ) + + − −λ ρ λ ρ

θ Π ++ − + − − +











λ ρ θ λ ρn K E n r K KS) ( , ( ) ) ( )02 2 2 2 1 21Π

, (13.4)

where fraction λ of the total increase in labor nr is allocated to Firm 1, and 
fraction (1 − λ) to Firm 2. We need not adopt a rule for how each agent 
would allocate her additional labor ρ between the two firms, as this decision 
(and therefore the value of λ) will turn out not to matter. It is assumed that 
workers are price takers: in particular, they take the wage w as fixed.

A comment on the logic behind equation (13.4) is in order. A Nash 
player, who chooses his labor supply while assuming that all other labor sup-
plies remain fixed, need not consider the effect of his labor-supply decision 
on either the profits of firms in which he works or owns equity, or the demo-
grant, if the economy is large. Hence, our practice in Nash-type analysis is to 
ignore these effects. But in Kantian optimization, the counterfactual that the 
worker envisages is that all workers change their labor supplies in the same 
amount as the change he is contemplating, and hence consistency in the 
thought experiment requires that we alter the labor supplies to firms, and the 
value of the demogrant, accordingly. By assuming that workers are price tak-
ers, we thereby assume that they ignore the macro effect on the wage w of the 
variation in labor supply (nρ) which they are contemplating. Strictly speak-
ing, this is not rational. Thus, the price-taking assumption has real bite here. 
The same can be said for traditional models of economic equilibrium, where 
workers are Nash optimizers, if the number of agents is finite and small.

At this counterfactual labor supply by worker i, Ei1 + Ei2 + ρ, given her 
income as specified by (13.4), let the agent compute her commodity de-
mands, which are the solution of the program:
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max ( , , )

( ,

,
u x y E

p x p y I E E n

i

x y

i

i i S

+

+ = + +

ρ

ρ λ

subj.to

1 2

1

ρρ λ ρ, )E nS2 1+ −( )
.  (13.5)

Denote the solution to this program by ( ( , ),( ( , ))x I E y I Ei i i i i i[ρ] ρ [ρ] ρ+ + ,  
where we abbreviate with the notation I I E E n Ei i i S S[ρ] ρ ρ≡ + + +( , ,1 2λ  
( ) )1− λ ρn .

We now define the payoff functions of a game. The payoff to agent i is 
his utility at prices (p1,p2,w,r) if the capital invested in the firms is (K1,K2) 
and the vector of labor supplies (E1,…,En) were to determine wage income, 
profit income, and the value of the demogrant, that is:

 V E E u x I E y I E Ei n i i i i i i i i
+ =( ,..., ) ( ( [ ], ), ( [ ], ), )1 0 0 . (13.6)

Incorporated in the payoff function is the assumption that at her personal 
part of the community effort vector, agent i has chosen her commodity de-
mands optimally, given the income generated.

Thus, given a vector of prices p = (p1,p2,w,r) and the ownership shares of 
firms, a game whose strategies are effort/labor supplies is defined, denoted 
V+. We can define its additive Kantian equilibrium, which is a vector of 
labor supplies E = (E1,…,En), satisfying:

 ( )(argmax ( ( , ), ( , ) .∀ + + =i u x I E y I Ei i i i i i i

ρ
[ρ] ρ [ρ] ρ 0  (13.7)

13.4 Walras-Kant Market-Socialist  
Equilibrium with Taxation

The data of the economy are ( ,..., ; , ; ,..., ; { , ,..., ;u u G H E E i nn n il1 1 0θ =  
l K= 1 2 0, }; ). It is useful, for conceptualizing Pareto efficiency, to define the 
utility function of the state, which is:
 u x x0( ) = . (13.8)
That is, the state cares only about Good 1, which it uses for investment.

We now define:
Definition 13.1 A Walras-Kant (additive) market-socialist equilibrium at 

tax rate t consists of:
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(i) a price vector (p1,p2,w,r);
(ii) labor and capital demands by the two firms of D1,D2 and K1,K2, 

respectively;
(iii) labor supplies (Ei1,Ei2) by all workers i to Firms 1 and 2; and
(iv) for all private agents i, commodity demands (xi,yi) for the outputs 

of Firms 1 and 2, respectively, and a demand for the first good by the state 
of x0;

such that:
(v) at given prices, (Kl,Dl) maximizes profits of Firm l, for l = 1,2;
(vi) the labor supply vector E = (E1,…,En), where Ei = Ei1 + Ei2 consti-

tutes an additive Kantian equilibrium at the given prices of the game V+, as 
defined in (13.6);

(vii) (xi,yi) maximizes the utility of agent i, given prices, her labor supply, 
and her income, given by (13.1);

(viii) x0 maximizes the state’s utility u0 subject to its budget constraint 
p x rK1

0 01 1 02 2
0≤ + +θ θΠ Π ; and

(ix) all markets clear; that is, D E ll il

i

= =∑ for 1 2, , x G K DS = ( , )1 1 ,
y H K DS = ( , )2 2 , and K K K0

1 2= + .
The depreciation rate of capital is set at zero. Thus, at the beginning 

of the (imaginary) next period, the state’s endowment of the capital good 

would be K
I
p0

0

1

+  (see equation (13.3)).

13.5 The First Theorem of Welfare Economics  
for Market Socialism

The appropriate concept of Pareto efficiency will be called investment-
constrained Pareto eff﻿iciency. An allocation is investment-constrained Pa-
reto efficient if there is no other feasible allocation that makes at least one 
agent better off without harming any agent, where the state is included as 
an agent. Since the model is not intertemporal, it is important to qualify 
the kind of Pareto efficiency that can be realized: citizens cannot trade off 
present against future consumption in the model, and hence we cannot 
speak of efficiency in the full sense. To say this more straightforwardly: the 
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state’s investment is determined by its endowment of capital, not by any 
considerations of the population’s future welfare. We know that both the 
Soviet Union and post-1949 China probably invested too much, commit-
ting their populations to excessively low consumption. Such can happen in 
this model, too.

One can show that, with differentiability and the usual convexity as-
sumptions on utility and production functions, an interior allocation2 is 
investment-constrained Pareto efficient exactly when:
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1

2

1

=

, (13.9)

where G
G
K1 ≡ ∂

∂
, and so on.

Conditions (a)–(d) specify feasibility; conditions (e)–(g) specify efficiency.
Proposition 13.1 Assume differentiability of the production functions 

and the utility functions. Assume that the production functions are concave 
and the utility functions are strictly concave. Let (p1,p2,w,r,E1,E2,D1,D2,K1, 
K2,x,y) comprise a Walras-Kant (additive) market-socialist equilibrium at 
any income tax rate t ∈[ , ]0 1 . Then the induced allocation is investment- 
constrained Pareto eff﻿icient.

Proof.
1. Although the theorem’s statement assumes that the equilibrium is in-

terior, this is easy to relax, with a concomitant alteration of the first-order 
conditions.

2. At a Walras-Kant equilibrium at tax rate t, profit maximization gives:

 p G K E w p H K E p G r p HS S
1 2

1 1
2 2

2 2
1 1 2 1( , ) ( , )= = = =and , (13.10)
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and clearing of the capital market tells us that K1 + K2 = K0. Therefore, it 
follows from (13.9) that an interior equilibrium is investment-constrained 
Pareto efficient if and only if:

 ( )(
( , , )
( , , )

&
(

∀ ≤ ≤ − = −1 3

1 1

3i n
u x y E
u x y E

w
p

u xi i i i

i i i i

i ii i i

i i i i

y E
u x y E

w
p

, , )
( , , )

)
2 2

= . (13.11)

3. Consider the program:
max ( , , )

,x y

iu x y E

x p y I
subj.to
p1 2+ = ,

where E and I are fixed. Denote the solution ( ( ; ), ( ; ))x I E y I Ei i . The first-
order conditions for the solution of the program are:

 
p u x I E y I E E p u x I E y I Ei i i i i i

2 1 1 2( ( ; ), ; , ) ( ( , ), ( , ),( ) − EE

p x I E p y I E Ii i

)

( , ) ( ; )

=
+ − =

0

01 2

. (13.12)

By the implicit function theorem, the functions (xi,yi) are differentiable, and 
their derivatives are given by:

 x I E
p u p u

p p p p
i

i i

i T1
1 22 2 12

2 1 2 1

( , )
( , ) ( , )

= −
− −U

, (13.13)

 y I E
p u p u

p p p p
i

i i

i T1
2 11 1 12

2 1 2 1

( , )
( , ) ( , )

= −
− −U

, (13.14)

 x I E
p p u p u

p p p p
i

i i

i T2
2 1 23 2 13

2 1 2 1

( , )
( )

( , ) ( , )
,=

−
− −U

 and (13.15)

 y I E
p p u p u

p p p p
i

i i

i T2
1 1 23 1 23

2 1 2 1

( , )
( )

( , ) ( , )
=

−
− −U

, (13.16)

where Ui is the leading principal submatrix of order two of the Hessian of 
the function ui and the superscript T indicates “transpose.” Note that the 
implicit function theorem indeed applies because Ui is negative definite 
by the strict concavity of ui, and so the denominators of equations (13.13)–
(13.16) do not vanish.

4. Now the labor-supply vector is an interior additive Kantian equilib-
rium of the game V+ if and only if:
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for all i
d
d

u x I E y I E Ei i i i i i i i≥ + + +
=

1
0

, , , , ,
ρ

[ρ] ρ [ρ] ρ ρ
ρ

( ) ( )(( ) = 0 . (13.17)

This statement reduces to:

 u x I x u y I y ui i i i i i i i i
1 1 2 2 1 2 30 0 0⋅ +( ) + ⋅ +( ) + =′ ′[ ] [ ] ) , (13.18)
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dI E E n E n
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i i S S
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≡
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ρ λ ρ λ ρ
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.

5. From (13.4), calculate that:
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Since the four partial derivatives ( , , , )Π Π Π Π1

1
2
1

1
2

2
2  of the firms’ profit func-

tions are zero, by profit maximization, and p1G2 = p1H2 = w, (13.19) re-
duces to:
 I t w tw wi′ = − + =[ ] ( )0 1 , (13.20)

for any t. It is now evident why we did not have to specify how workers al-
locate the increment r in labor between the two firms: the parameter λ does 
not appear in condition (13.20).

We therefore write the condition for Kantian equilibrium of labor sup-
plies, equation (13.18), as:

 u x w x u y w y ui i i i i i i
1 1 2 2 1 2 3 0⋅ + + ⋅ +( ) + =( ) ) . (13.21)

6. We now expand equation (13.21) by making a sequence of substitu-
tions: (i) substitute the expressions for the four derivatives of the xi and yi func-
tions from (13.13) through (13.16), and (ii) eliminate p1 via the substitution 
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= , the first-order condition from (13.12). So doing reduces (13.21) to:
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where d p p p p p
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1 , which is a nega-

tive number. Last, divide both sides of equation (13.22) by the positive num-
ber ui

2 , simplify, and calculate that that equation reduces to:
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i
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= − , (13.23)

which is one of the two required efficiency conditions for agent i.

7. Now substitute for p2 in the last equation using p
p u
u

i

i2
1 2

1

= , yielding:

 
w
p

u
u

i

i
1

3

1

= − . (13.24)

By equations (13.23), (13.24), and (13.11), the proposition is proved. ■
The key move in the proof is to show that, regardless of the tax rate, 

when a worker thinks of all workers as varying their labor supplies in the 
amount that she is contemplating varying her own, she internalizes the ex-
ternality generated by her labor-supply choice—a choice that affects firm 
profits and tax revenues. Her own action causes a negligible change in these 
magnitudes, but of course the aggregate effect of many small changes is 
significant. The additive counterfactual in the universal change in labor sup-
plies and linear income taxation combine in such a way as to exactly cancel 
the deadweight loss of taxation that afflicts Nash optimization in the labor-
supply decision. (This is the meaning of equation (13.20), the key to the 
proof.) This kind of pairing—associating a specific cooperative optimization 
protocol with a particular allocation rule, where the two together deliver 
Pareto efficiency—is a feature of Kantian equilibrium in simpler (nonmar-
ket) environments, as we have seen in Part I. What’s new here is combining 
additive Kantian optimization with markets.

A remark on why the incentive problem, causing deadweight losses in 
the standard model, does not bite here. Consider, for dramatic effect, an 
income tax rate of one, and suppose that every worker is supplying zero la-
bor (as he would in the standard Nash-type model at this tax rate). But here, 
by using the Kantian optimization protocol, a worker balances his share 
of an increase of the demogrant that would occur if all workers increased 
their labor supply from zero to some small positive ρ against his (very small) 
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disutility of labor at zero. The trade-off is usually worth it, even though his 
after-tax wage is zero. Consequently, at the Kantian equilibrium, even at a 
tax rate of unity, (most) workers will supply a positive amount of labor.

13.6 An Example of Walras-Kant (Additive) 
Market-Socialist Equilibrium

Because capital allocation is passive in this model, let’s simplify by studying 
an economic environment where the capital inputs are fixed, there is no 
state, and we model production as a function of labor only:

 G E E
a

E H E E
b

E

u x y E x y E Ei i

( ) , ( )

( , , ) ( )/ /

= − = −

= −
2 2

2 2

1 3 1 3 11 3 1/ , ,...,for i n=
. (13.25)

There are n agents, and the total endowment of labor is E ES i

i

n

=
=
∑

1

. We 

let θ θi i

n
1 2 1= =  for all 1 ≤ i ≤ n. We set θ θ01 02 0= = . We normalize the 

price vector by choosing w = 1. There is no market for capital and hence 
no interest rate.

An interior allocation is a Walras-Kant market-socialist equilibrium at 
income tax rate t when the allocation is Pareto efficient, the income of i 
is given by (13.1), and markets clear. (The critical condition that the labor 
supplies comprise a Kantian equilibrium of the game V+ is embedded in 
the efficiency conditions, as the proof of Proposition 1 shows.) We write 
these conditions as:
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and (13.1) holds for all i. By (13.26), the post-fisc income of agent i is given 
by I p x p y E Ei i i i

i= + = −1 2 2( ) . Hence, (13.1) can be written:
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By adding up the equations over all i in (13.26), we have:

 p x p G E E E E

p y p H E E E

S S S S S

S S S S
1 1

1 1 2

2 2
2

= = − +
= = −

( ) ( ),

( ) ( 11 2+ ES )
. (13.28)

Now using the expressions for commodity prices in (13.26), we write these 
equations as:
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System (13.29) comprises two equations in the two unknowns ES1 and ES2; 

the solution must be a vector ( , ) ( , ) ( , )E E
a b

S S1 2 0
1

0
1∈ × . Thus total produc-

tion at Walras-Kant equilibrium for this economy, if such exists, is inde-
pendent of the tax rate t. Profits are also independent of t. Taxation simply 
redistributes an invariant output vector of commodities.

Parameterize the example with (a,b) = (0.1,0.2), E nS = =10 100, . We 
have not yet specified the individual endowments Ei . We solve (13.29):

 E ES S1 23 28 2 63= =. , . . (13.30)

Profits are positive for both firms and comprise 28 percent of national 
income.

To complete the analysis, we must specify the {Ēi} and solve for {Ei}. 
Rewrite equation (13.27) as:

 2 3
1 2

1 2E E t
n

t
n

E Ei i S S+ − = + + +( ) ( )
Π Π

. (13.31)

Examination shows that equation (13.31) possesses an interior solution in 
which E Ei i∈( , )0  for all i exactly when:

 for all i, E
n

t E Ei S S> + + +1
2

1 2 1 2( ( ))Π Π . (13.32)

If, on the other hand, (13.32) is false for some i, then there is no interior 
equilibrium.

It is of interest to compute the lower bound on the labor endowment 
that will guarantee an interior Walras-Kant equilibrium at tax rate t. From 
(13.32), this depends on the tax rate. We compute this lower bound for vari-
ous tax rates for our example as in table 13.1.
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Table 13.1 The minimum value of Ēi supporting an interior 
Walras-Kant equilibrium as a function of the tax rate

Tax rate t min Ēi

0 0

0.1 0

0.2 0

0.3 0

0.4 0

0.5 0.003

0.6 0.011

0.7 0.018

0.8 0.026

0.9 0.033

1.0 0.041

Recall that the average labor endowment with our parameterization is 
E
n

S

= 0 1. . From the table, a Walras-Kant market-socialist equilibrium exists 

where all agents work regardless of the distribution of individual labor en-
dowments, as long as t ≤ 0.4. But as the tax rate rises, the restriction on the 
distribution of labor endowments bites.

For tax rates larger than 40 percent, equilibrium still exists, but workers 
who are insufficiently skilled do not work. We illustrate with a second para-
materization. The utility functions and production parameters are as before, 
but we examine an economy with two agents (n = 2), where E E1 29 1= =, .  
If both agents work, then ES1 and ES2 are given by (13.30). Let us look for 
an equilibrium where t = 1. Both agents must then have the same after-tax 
income. Inequality (13.32) is false for agent 1, so there is no equilibrium 
at t = 1 where both agents work. We therefore set agent 2’s labor supply 
to zero: E2 = 0. The other equations characterizing a Walras-Kant market-
socialist equilibrium are:
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+

≥ ≥

,

, .

 (13.33)

The two equations in the first line say that the marginal rates of substitution 
for the agent with positive labor supply equal the correct price ratios; the 
second line says that the marginal rates of transformation equal the correct 
price ratios; the third line is true because when the tax rate is 1, both agents 
have the same (post-fisc) income, and so consume the two commodities 
identically; the fourth line expresses market clearing for the two commodi-
ties; and the fifth line expresses the efficiency condition for the agent who 
supplies zero labor. The solution is given by:

 x x y y

p p E

1 2 1 2

1 2 11

1 513 1 024

1 592 2 352 3

= = = =
= = =

. , . ,

. , . , .. , .717 2 87412E =
. (13.34)

13.7 Existence of Walras-Kant Market-Socialist Equilibrium

We first note:
Proposition 13.2 Let (p1,p2,w,r,E1,E2,D1,D2,K1,K2,x,y) be a Walrasian 

equilibrium at t = 0. (The state is simply another agent that desires to con-
sume only the first good and possesses no labor endowment.) Then it is also 
an additive Walras-Kant market-socialist equilibrium at t = 0.

Proof. We know that the allocation is investment-constrained Pareto ef-
ficient by the usual first welfare theorem for private-ownership economies. 
The income equation (13.1) holds by definition of Walrasian equilibrium. 
We need only show that the labor supplies comprise a Kantian equilibrium, 
which is to say that equation (13.21) holds. But we have shown that this is 
equivalent to the efficiency conditions that MRSi = MRT. These condi-
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tions hold by hypothesis, since the allocation is Walrasian and therefore 
Pareto efficient, and the claim is proved. ■

We assume:
Assumption A.
(i) G,H are unbounded, concave, and homothetic, and the Inada condi-

tions hold; and
(ii) all consumer preferences are representable by strictly concave, dif-

ferentiable utility functions, and both commodities are normal goods for all 
consumers.

Let ∆3 be the 3-simplex of price vectors p = (p1,p2,w,r). We define a cor-
respondence on the domain int ∆3. Let Q be any real number and Qi*( )⋅  be 
positive continuous functions on int ∆3. Let:

 

A p p w Q u x y E p x p y wEi

x y E

i( , , ; ) argmax{ ( , , ) |
, ,

1 2 1 2= + = + QQ

B p p w Q x y E

E p x p y

i i

i

}

( , , ; ) {( , , )

[ , ] |

*
1 2

2

1 20

= ∈ℜ ×
+

+

== − +( ) ( )}*1 t wE Qi p

 (13.35)

Now define Γ i : int ∆ →→ ℜ+
3 3  by:

 Γ i i i ip p w Q A p p w Q B p p w Q( , , ; ( )) ( , , ; ) ( , , ; (* *
1 2 1 2 1 2p p= )))∩∪

�∞> ≥Q Q

, (13.36)

where �Q Q twEi i= −*( ) .p �Q  may be positive, zero, or negative. Last, define:

 
Γ Γ

Γ
( , , ; ( )) ( , , ; ( )) ...

(

* *p p w Q p p w Q

pn
1 2

1
1 2

1p p= ×
× 11 2, , ; ( ))*p w Qn p

.   (13.37)

Lemma 13.3 Let t ∈( , ]0 1  and ( , , , ) intp p w r1 2 ∈ ∆. Let Qi* : int ∆ → ℜ++  
be continuous functions for all i. If Assumption A(ii) holds, then Γ is a (non-

empty) continuous function mapping int ( [ , ])∆ → ℜ ×+
=

∏ 2

1

0 Ei

i

n

.
Proof.
1. It suffices to show that Γi is single-valued and continuous for any i. 

By strict concavity of preferences, the correspondence Ai is single-valued 
and continuous on int ∆. Suppose that Γi contains two elements—that is, 
there are allocations ( , , ) ( , , ; ) ( , , ; ( )),*x y E A p p w Q B p p w Qi i

ν ν ν ν∈ 1 2 1 2∩ p  for 
ν= 1,2, with Q2 > Q1. It follows that:
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 p x p y w E Q
p x p y t w E

1 2

1 2 1
( ) ( ) ( ) ( )
( ) ( ) ( ) (
δ δ δ δ
δ δ δ

+ = +
+ = − ))

, (13.38)

where δx x x≡ −2 1, and so on. Therefore, the quantities on the right-hand 
sides of the two equations in (13.38) are equal, implying that:

 δ δQ tw E= − , (13.39)

and so δE < 0 (note t > 0 by assumption). Therefore:

 p x p y t wE Q t wE

Q p x p
1 2 2 2 2 1

1 1 2

1 1+ = − + < −
+ = +

( ) ( ) ( )

( )

*

*

p

p yy1

, (13.40)

and so either x2 < x1 or y2 < y1. But since ( , , ) ( , , ; )x y E A p p w Qi
ν ν ν ν∈ 1 2  for 

ν = 1,2, it must be that x2 > x1 and y2 > y1 because both commodities are 
normal goods, and the consumer’s wealth (check the definition of Ai) is 
greater at ν = 2 than at ν = 1. This contradiction proves that Γi contains at 
most one element.

2. Next we show that Γi contains at least one element. B p p w Qi i( , , ; )*
1 2  

is a planar segment. We say that a point (x,y,E) lies above (respectively, be-
low) the planar segment B p p w Qi i( , , ; )*

1 2  if it lies in the positive orthant and 
p x p y t wE Qi

1 2 1+ < − +( ) * (respectively, p x p y t wE Qi
1 2 1+ > − +( ) *). Note 

that the points on planar segment

p x p y wE Q x y E Ei
1 2

2 0+ = + ∈ℜ ×+
� , ( , , ) [ , ]

lie entirely below (or, at one point, on) the planar segment B p p w Qi i( , , ; )*
1 2  

because:

 wE Q wE Q twE wE Q

twE t wE Q

i i i

i

+ = + − ≤ +
− = − +

� * *

*( )1
. (13.41)

It therefore follows that A p p w Qi( , , ; )1 2
�  lies below (or possibly on) the pla-

nar segment B p p w Qi i( , , ; )*
1 2 . On the other hand, for large values of Q, the 

points of

p x p y wE Q x y E Ei
1 2

2 0+ = + ∈ℜ ×+, ( , , ) [ , ]

must lie entirely above Bi. Since Ai(p1,p2,w;Q) is a continuous function of 
Q, by the Berge maximum theorem, it follows that there exists at least one 
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value of Q such that A p p w Q B p p w Qi i i( , , ; ) ( , , ; )*
1 2 1 2∩ ≠ ∅ . Thus, Γi is a 

well-defined function.
3. Continuity of Γi follows from Berge’s maximum theorem. ■
Proposition 13.4 Let an economic environment { , , , , , }u θ G H E K0  be given, 

and let Assumption A hold. Suppose that Ei > 0 for all (private) agents and that 
θ θ01 02 2+ < . Then a Walras-Kant equilibrium exists for any 0 ≤ t < 1.

Proof.
1. The theorem is true for t = 0 by Proposition 13.2, since a Walrasian 

equilibrium exists at t = 0 under the stated premises. Henceforth, we as-
sume 0 < t < 1.

2. Given a price vector ( , , , ) intp p w r1 2
3∈ ∆ , define (D1,D2,K1,K2) to be 

the solution of:

 
( , ) argmax( ( , ) )

( , ) arg
( , )

K D p G K E wE rK

K D
K E

1 1
1

2 2

= − −

= mmax( ( , ) )
( , )K E

p H K E wE rK2 − −
. (13.42)

Note that, by Assumption A(i), the solution exists and satisfies:

G K D
w
p

H K D
w
p

G K D
r
p

H K

2
1 1

1
2

2 2

2

1
1 1

1
1

2

( , ) , ( , ) ,

( , ) , (

= =

= ,, )D
r
p

2

2

=
.

3. The profits of the two firms and the value of the demogrant are defined 
at (D1,D2,K1,K2). Profits are positive for any price vector ( , , , ) intp p w r1 2

3∈ ∆ .
We now consider the budget constraints of individuals:

 

p x p y t wE t K D K Di i
1 2

1 1 1 1 2 2 2 21 1+ = − + − +(( ) ( ) ( , ) ( , )θ θΠ Π )) +

+ − −t
n

p G K D p H K D K D( ( , ) ( , ) ( , )

(

1
1 1

2
2 2 01 1 1 1

02 2

θ

θ

Π

Π KK D r K K2 2 1 2, ) ( ))− +

 (13.43)

and the budget constraint of the state at the firms’ demands:

 p x K D K D r K K1
0 01 1 1 1 02 2 2 2 1 2= + + +θ θΠ Π( , ) ( , ) ( ). (13.44)

Let Qi*( )p  equal the sum of the last two terms on the right-hand side of 
equation (13.43). By the theorem’s premise, all private agents have positive 
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income at any ( , , , ) intp p w r1 2
3∈ ∆ , because the state does not receive all the 

firms’ profits by assumption, and the tax rate is positive. Qi*( )⋅  are positive 
continuous functions, and so the premises of Lemma 13.3 hold; therefore, 
the functions Γ i ip p w Q( , , ; ( ))*

1 2 p  are defined and continuous. Henceforth, 
we write Γ Γi i ip p w Q( , , ; ) ( )*

1 2 ≡ p . Let ( , , ) ( )x y Ei i i i= Γ p  for i ≥ 1.
4. Define the excess demand functions at a vector p = ∈ ∆( , , , ) intp p w r1 2 :

 
∆ = + − ∆ = −

∆ = −

∑ ∑
=

E D D E x x G K D

y y H K D

i i

i

n

i

1 2 1 1

0

2 2

, ( , ),

( , ),,
i

n

K K K K
=
∑ ∆ = + −

1

1 2
0

. (13.45)

Define the excess demand function for the economy by:

 z x y t E t K( ) ( , ,( ) ,( ) )p = ∆ ∆ − ∆ − ∆1 1 . (13.46)

Next, define the correspondence Φ on ∆ as in equations (11.8) and (11.9), 
above.

5. By summing the budget constraints in (13.43) and (13.44) we verify 
Walras’s Law for this economy, defined on int ∆3 :

 p x p y t w E t r K z1 2 1 1 0∆ + ∆ + − ∆ + − ∆ = ⋅ =( ) ( ) ( )p p . (13.47)

6. At a fixed point p of Φ, z(p) = 0. Consequently, ∆ = ∆ = − ∆x y t E( )1
= − ∆ =( )1 0t K , and all markets clear. We deduce ∆ = ∆ =E K 0  from the 
premise that 1 − t > 0.

7. Associated with these prices is an allocation (x,y,E), with 
( , , ) ( )x y Ei i i i∈Γ p  for all 1 ≤ i ≤ n. We must show that (E1,…,En) is a K+ 

equilibrium at prices p. This follows immediately from the definition of 
the functions Γi, because the first-order conditions for Kantian equilibrium, 
which were derived in the proof of Proposition 13.1 and are stated in equa-
tions (13.23) and (13.24) follow from the fact that ( , , ) ( , , ; )x y E A p p w Qi i i i∈ 1 2  
for some constant Q. And the fact that ( , , ) ( , , ; ( ))*x y E B p p w Qi i i i∈ 1 2 p  means 
that (xi,yi,Ei) satisfies i’s budget constraint, so the commodity demands are 
optimal for i, given her income.

8. Thus, a fixed point of Φ is a Walras-Kant market-socialist equilibrium 
at tax rate t. To show the existence of a fixed point, we need to check that 
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the premises of Kakutani’s fixed point theorem hold. Φ is obviously convex-
valued. Upper hemicontinuity of Φ at any point in int ∆ follows quickly.

Last, we examine the upper hemicontinuity of Φ at points on the bound-
ary of the simplex. Suppose that p pj j j j jp p w r= → ∈∂∆( , , , )1 2

3. Suppose that 
the sign pattern of p is (+,+,0,+). We have Φ( , , , ) {( , , , )}.p p w r1 2 0 0 1 0=  
Eventually p p rj j j

1 2, ,  are positive and bounded away from zero, and wj → 0.
We must show that lim ( ) ( , , , )

j

j

→∞
=Φ p 0 0 1 0 . Without loss of generality, we 

may assume that pj ∈ ∆int 3 for all j. Denote the excess demands at pj by 
∆ ∆ ∆ ∆x j y j E j K j( ), ( ), ( ), ( )and . We will show that, for j sufficiently large,

 ∆ > ∆ ∆ ∆E j x j y j K j( ) max[ ( ), ( ), ( )] ,  (13.48)

and this will imply that, for sufficiently large j, Φ( ) ( , , , )pj = 0 0 1 0 . To show 

(13.48), we will show that 
∆
∆

→z j
E j

( )
( )

0, for z x y K∈{ , , }.

We show that 
∆
∆

→K j
E j

( )
( )

0. We know that ∆ → ∞E j( ) , because wj → 0, 

and so the firms will demand unbounded amounts of labor, while the sup-
ply of labor is bounded. If ∆K j( )  were bounded above, we would be done. 
So we suppose that ∆K j( )  is unbounded. It follows that for at least one 
firm—say, the G firm— K Dj j1 1→ ∞ → ∞and . But by profit maximization, 

G K D
G K D

w
r

j j

j j

j

j
2

1 1

1
1 1 0

( , )
( , )

= → . By homotheticity of G (Assumption A(i)), the points 

( , )K Dj j1 1  must eventually lie below any ray in the positive quadrant of (K,D) 

space. This implies that 
∆
∆

→K j
E j

( )
( )

0, as required.

The other cases of points on ∂∆3  yield to similar analysis. Hence, the 
premises of Kakutani’s theorem hold, and a fixed point in int ∆3, which is a 
Walras-Kant market-socialist equilibrium, exists. ■

13.8 A Market-Socialist Design Where 
Investors Are Kantian Cooperators

Note that in the model just presented, Kantian optimization in one market, 
the labor market, suffices to guarantee Pareto efficiency at the equilibrium, 
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for any tax rate in the unit interval. In this section, I present a model where, 
again, Kantian optimization occurs in only one market, but this time it is 
the capital market. Private investors make their investment decisions using 
the additive Kantian protocol, and again we can completely separate ef-
ficiency from “equity.”

I propose here a two-period model, so that investors face the usual deci-
sion in which they must trade off consumption in different periods by invest-
ing. Investment, that is to say, is not passive as it is in the model presented 
in the above sections. In the market-socialist literature, capital investment 
in firms has almost always been relegated to a public institution—either the 
state treasury or publicly owned banks. Pranab Bardhan (1993) and Bard-
han and Roemer (1992) advocate a system of main banks, modeled after 
the Japanese practice, each of which is responsible for monitoring firms 
in its orbit and raising investment funds for them. Leland Stauber (1987) 
recommends that investment be handled by nonprofit institutions of vari-
ous kinds, including ones owned by local governmental bodies. Roemer 
(1994) suggests that investment be carried out by the state treasury but that 
the value of firms be determined by a stock market in which individuals can 
trade stock denominated in a special “coupon” currency.

Here, I propose how investment can be decentralized completely, with 
investment decisions made by individuals who own capital, and no interme-
diary institutions. This immediately raises two problems: first, it would seem 
that capital income would then naturally become unequal, contradicting 
the main distributional goal of socialism, which is to equalize the distribu-
tion of capital income in a country. Second, there would be no natural 
monitors of firm behavior, because no investor would have a large enough 
position in any firm to have the incentive to monitor its management. I 
deal with the first problem through redistributive income taxation. I do not 
address the second problem here: this proposal should be viewed as exactly 
analogous to the general equilibrium model of Arrow and Debreu, where 
individuals own capital goods and decide how much to invest in firms based 
on the utility-maximization calculus. The firm-monitoring problem is ig-
nored there as well. To deal with it, intermediary institutions between indi-
viduals and firms, such as banks, would have to exist to channel investments 
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by individuals to firms. Describing the governance of such institutions is 
another question.

Why is this exercise worthwhile, given my decision to ignore the in-
stitutional structure that must intermediate between investors and firms? 
Because the theory I present addresses a major issue—perhaps the major 
issue—in socialist finance, which is this: in a market economy, individu-
als (households) will accumulate savings at different rates, based on their 
differential rates of time preference and differential skills, the latter leading 
to differential wage incomes. The socialist mechanism must channel these 
savings into capital investment, and in a way that does not lead to massively 
differential capital incomes among the citizenry. How to accomplish this 
is perhaps the most important conceptual problem for market socialism, 
and the problem is addressed in its starkest form in the general equilibrium 
model of Arrow and Debreu.

To summarize, I propose how a precise formulation of cooperative invest-
ment behavior can achieve equilibria in a market economy that are:

• decentralized;
• Pareto efficient; and
• egalitarian.

This leaves us to ponder whether the foundation on which the theory 
rests, Kantian optimization, is a psychologically realistic protocol that hu-
mans might be able to achieve or whether it is simply a mathematical trick 
whose achievement, given human nature and cognitive capacity, would be 
utopian.

13.9 The Economic Environment

I wish to propose the simplest possible model in which to present these 
ideas. There will be one firm, which produces a single good from capital 
and labor, whose production function is a concave, increasing function G. 
With capital and labor inputs K and L, where L is measured in efficiency 
units, the output of the good is G(K,L). The good can be either consumed 
or used as capital.
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The economy will last for two periods. Production occurs only in period 
one. There are n citizens; citizen i has a utility function u x u xi i i i i( ) ( )1 2+ β , 
where ui is a concave function and xj

i is the consumption of individual i in 
period j, for j = 1,2. βi is the subjective time discount factor for agent i. At 
the beginning of period one, citizen i possesses an endowment of the good 
in amount W i

0, and this endowment may be used either for consumption 
or for investment in the firm. When invested and used by the firm, capital 
depreciates at a rate d. The total capital K that is invested in period one will 
be returned to the economy in amount (1 – d)K in period two and will then 
be consumed.

Citizens are also endowed with different amounts of labor in efficiency 
units: let the efficiency units of labor possessed by citizen i be denoted Li. 
Leisure does not enter the utility function of workers, so all labor will be 
used in production in period one.

A feasible allocation for the economy can be denoted by ( , { , , ˆ , ˆ })K x x x xi i i i
1 2 1 2 ,  

where K is the total capital investment in period one, xj
i  is the consumption 

of individual i in period j = 1,2, and ˆ ˆx xi i
1 2and  are the consumptions of the 

good by individual i in the two periods supplied from the output of the firm 
in period one, where the following inequalities must hold:

 x W K xS S S
1 0 1≤ − + ˆ , (13.49)

 x d K xS S
2 21≤ − +( ) ˆ ,  (13.50)

 ˆ ˆ ( , ).x x G K LS S S
1 2+ ≤  (13.51)

The first inequality says that total consumption in period one cannot exceed 
the endowment that was not invested plus what is produced by the firm in 
period one and consumed; the second inequality says total consumption in 
period two cannot exceed the depreciated capital stock that was invested in 
the firm in period one plus what was produced in period one for consump-
tion in period two; and the third inequality says that what is produced with 
the capital and labor supplied to the firm in period one suffices to satisfy the 
consumption plan of the economy in the two periods.
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A Pareto-eff﻿icient allocation is a feasible allocation with the property that 
any other feasible allocation must reduce the utility of at least one citizen. 
An interior allocation is a feasible allocation at which:

 
for all and

and

i x x K W

x x

i i S

S

, ,
ˆ , ˆ

1 2 0

1

0 0 0

0

> > < <
> 22 0S > .

  (13.52)

We can characterize interior Pareto-efficient allocations as follows. Let 

G K L
G K L

K1( , )
( , )= ∂
∂

 and, similarly, u x
du x

dx
i

i

′ =( )
( )

.

Proposition 13.5 Assume that G W L dS S
1 0( , ) < . An interior allocation is 

Pareto eff﻿icient if and only if:

G K L d i u x u xS i i i i i
1 1 2( , ) ( )( ( ) ( ))= ∀ ′ = ′and β .

Proof.3

A feasible allocation is Pareto efficient if it solves the following program:

 

max ( ) ( )
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2
1
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γ

  (13.53)

The Kuhn-Tucker conditions for an interior solution are:

• G K L dS
1( , ) = ;

• for all j, ′ = ′u x u xj j j( ) ( )1 2β ; and
• the last three constraints in program (13.53) hold with equality.

In particular, there exists a (unique) value K W S< 0  such that G K L dS
1( , ) =  

if and only if G W L dS S
1 0( , ) < , if G is strictly concave. ■

In words, an interior Pareto-efficient allocation must use just that amount 
of capital that sets the marginal product of capital equal to the rate of de-
preciation, given full employment of labor, and it must equalize the ratio 
of the marginal utilities in the two periods to the discount factor, for each 
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consumer. In particular, all interior Pareto-efficient allocations employ the 
same amount of capital in production, since the first equation in Proposi-
tion 13.5 uniquely determines K, since LS is fixed. So total production is a 
constant in such allocations. All that changes across Pareto-efficient alloca-
tions is how the output is allocated among citizens.

We now assume the economy is that described above. As well as their en-
dowments of labor and the good, citizens own the firm, in shares θi, where 

θi

i

n

=
=
∑ 1

1

. (We need not discuss how the shares come to be distributed.) We 

introduce three markets, for investment, labor, and the good as consump-
tion. At the beginning of period one, a market for capital (the investment 
good) opens, with a rental rate for capital (r), and a labor market opens, with 
a wage (w) for one efficiency unit of labor. At the end of period one, a mar-
ket for the firm’s output opens, with a price (p) for the good. All purchases of 
the good at this point are used for consumption, in either period one or pe-
riod two. The firm maximizes profits at these prices, demanding an amount 
of capital K and an amount of labor L in efficiency units at the beginning of 
period one and selling its output at the end of period one. The profit of the 
firm at an allocation (K,L) of capital and labor and prices (p,r,w) is Π(K,L) 
= pG(K,L) − rK − wL.

Furthermore, there is an income tax rate t in [0,1]. If the (pretax) income 

of agent i is yi, her after-tax income will be ( )1− +t y t
y
n

i
S

.

Consumer-worker-investors supply capital and labor to the firm at the 
beginning of period one. All capital is supplied from the endowments W i

0. 
Given the amount of capital the agent is supplying to the firm, he chooses 
how to spend his income on the consumption good, which the agent allo-
cates to periods one and two. The agent’s investment decision—how much 
of its endowment of the good to supply as capital to the firm—must be an 
additive Kantian equilibrium of a “game” played among investors, which 
we now describe.

1. Citizen i supplies Li, its entire labor endowment, to the firm. Suppose 
it supplies an amount of capital Ki to the firm, where K Wi i≤ 0 . Then its 
budget constraint is:
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p x x p W K

t K L rK wL
t

i i i i

i i i

( ˆ ) ( )

( ) ( , )

1 2 0

1

+ ≤ − +

− + +( ) +θ Π
nn

pG K L( , )
  (13.54)

Constraint (13.54) states that the value of the good the agent consumes in 
period one plus the amount of the good it purchases for consumption in 
period two must not exceed the value of the good it saves from its endow-
ment in period one plus its after-tax income plus the value of its demo-
grant. Note that the market income of the consumer comes from three 
sources—its share of firm profits, its capital income from the rental of the 
capital good to the firm, and its wage income. Note that the entire output 
of the economy is taxed in period one, which explains the form of the 
demogrant.

In addition, its period two consumption must satisfy:

 x d K xi i i
2 21≤ − +( ) ˆ .  (13.55)

Inequality (13.55) says that the agent’s period two consumption must not 
exceed the depreciated capital stock that it receives back from the firm and 
what it purchased from the firm at the end of period one as for consumption 
good in period two.4

2. Suppose that we fix the capital investment profile of the economy,  
(K1,…,Kn), and so K = KS and L = LS. The agent now determines its con-
sumption demands in order to maximize u x u xi i i i i( ) ( )1 2+ β  subject to budget 
constraints (13.54) and (13.55). This is a conventional utility-maximization 
problem. Of course, the solution depends on the investment profile (K1,…,Kn).

3. Now suppose that each agent imagines adding a constant ρ—zero, 
positive or negative—to the profile of investments, producing a new total 
investment of KS + nρ. This will of course change the utility-maximizing 
demands of consumers for the consumption commodity in the two periods. 
Denote the new demands of the commodity by x xi i

1 2( ), ( )ρ ρ . We can now 
define the utility of agent i at the investment deviation ρ as:

 V K K u x u xi n i i i i i( ,..., ) ( ( )) ( ( ))1
1 2+ + = +ρ ρ ρ β ρ . (13.56)

To say that (K1,…,Kn) is an additive Kantian equilibrium of the game {Vi} 
means that the functions {Vi} are maximized at ρ = 0 for every player i. 
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That  is, no citizen would like to translate the investment vector by any 
constant.

We can now state:
Definition 13.2 A Walras-Kant market-socialist equilibrium at a tax rate 

t is a feasible allocation for the economy, and a vector of prices (p,r,w), such 
that:

(i) the firm demands (K,L) to maximize pG(K,L) − rK − wL, yielding 
profits Π and total output Y = G(K,L);

(ii) given Π,Y, and Ki citizen i demands ( , , ˆ , ˆ )x x x xi i i i
1 2 1 2  to maximize 

u x u xi i i( ) ( )1 2+ β  subject to constraints (13.54) and (13.55);
(iii) the vector of investments (K1,…,Kn) is an additive Kantian equilib-

rium of the game {Vi} defined in (13.56); and
(iv) all markets clear, that is:

K K L L G K L x xS S S S= = = +, , ( , ) ˆ ˆ1 2 .

This is a private ownership economy (the firm is owned by consumers); 
all choices are decentralized, including the investment decision. It differs 
from the conventional Arrow-Debreu model of a private ownership econ-
omy only in the investment decision, which is cooperative. In the original 
Arrow-Debreu formulation, the investment vector is a Nash equilibrium 
of the game {Vi}, where ρ = 0. To put this more simply, the agent’s utility-
maximization problem has her choosing not only her consumptions but her 
investment at the same time. In contrast, here the investment choice is a 
Kantian equilibrium, which has ramifications for the consumer’s choice of 
consumptions, which are chosen in the Nash manner.

We have:
Proposition 13.6 For any t ∈[ , ]0 1 , any interior Walras-Kant market- 

socialist equilibrium is Pareto eff﻿icient.5

Proof.
1. Let an equilibrium at tax rate t be given: the allocation is 

( , ; ,..., ; { , , ˆ , ˆ | ,..., })K L K K x x x x i nS S n i i i i1
1 2 1 2 1= , and the prices are (p,r,w). By 

profit maximization, we have pG K L r pG K L wS S S S
1 2( , ) ( , )= =and .

2. Because the consumption choices maximize the agents’ utilities given 
their investment choices, a conventional analysis shows that:
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t
n

pY

x x d K

K W

Π + + +

= + −
<

)

ˆ ( )2 2

0

1

,

where the last inequality comes from the interiority assumption.
3. Now consider the Kantian deviation on investment: if we add a con-

stant ρ to the investment profile (K1,…,Kn), the new consumption variables 
will satisfy these equations:

 u x u xi i i i i′ = ′( ( )) ( ( ))1 2ρ β ρ  (13.57)

 

p x x p W K

t G K n

i i i i

i S

( ( ) ˆ ( )) ( ( ))

( )( ( (
1 2 0

1

ρ ρ ρ
θ
+ = − + +

− + ρρ ρ

ρ ρ

) ( ) )

( ) ) ( , )

− + − +

+ + + +

r K n wL

r K wL
t
n

pG K n L

S S

i i S S

 (13.58)

 x x d Ki i i
2 2 1= + − +ˆ ( )( )ρ   (13.59)

 K Wi i+ ≤ρ 0   (13.60)

Invoking the Implicit Function Theorem, we can calculate the derivatives 
of the functions { ( ), ( ), ˆ ( )}x x xi i i

1 2 2⋅ ⋅ ⋅ . Differentiating the above system with re-
spect to ρ and setting ρ = 0 gives:

 

u x x u x x

x x

i i i i i i i

i

′′ ′ − ′′ ′ =

′ =

( ) ( ) ( ) ( )

( ) ˆ

1 1 2 2

2

0 0 0

0

β

22

1 2

0 1

0 0

i

i i

d

px px r p

′ + −

′ + ′ = −

( )

( ) ˆ ( )

 (13.61)

(The interesting calculation is the one leading to the third equation; the 
reader is invited to check it.) Using Cramer’s Rule, we can solve for the 
numbers { ( ), ( )}x xi i

1 20 0′ ′  as follows:

 
x

u x r pd
D

x
u x r pd

i
i i i

i
i i

1
2

2
2

0

0

′ =
′′ −

′ =
′′ −

( )
( ) ( )

( )
( )

β

(( )
D

, (13.62)
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where D
u x u x

p p

i i i i i

=
′′ − ′′

−

















det
( ) ( )1 2 0

0 1 1
0

β
.

4. Now, since (K1,…,Kn) is a Kantian equilibrium of the game {Vi}, we 
must have, from (13.56):

 

( ) ( ( )) ( ( ))

( )

∀ +( ) =

′
=

i
d
d

u x u x

u x x

i i i i i

i i i

ρ
ρ β ρ

ρ 0
1 2

1 1
′′ + ′ ′ =

′ ′′ −

( ) ( ) ( )

( )
( ) (

0 02 2

1
2

β

β

i i i i

i i
i i i

u x x

u x
u x r pdd

D
u x

u x r pd
D

i i i
i i)

( )
( )

,+ ′
′′ −( )

=β 2
2 0

 (13.63)

where the last inequality is achieved by substituting from (13.62). Now, us-
ing the fact that u x u xi i i i i′ = ′( ) ( )1 2β , the last expression in (13.63) implies that:

r = pd.

Hence, invoking step 1 of the proof, we have:

G1(K
S,LS) = d.

This proves that the allocation is Pareto efficient, by Proposition 13.5. ■

13.10 Summary

We have shown that by embedding Kantian optimization by citizens in 
either their labor supply decision or their investment decision in general 
equilibrium models that are otherwise quite conventional, equilibria exist 
that are Pareto efficient at any rate of income taxation. Thus, cooperation 
in the Kantian manner suffices to dissolve the “equity-efficiency trade-off.” 
Voters may choose a redistributive tax rate from purely distributional consid-
erations, without having to worry about economic costs.

It is important to remark that, unlike previous market-socialist models, 
this one relies not on equality in the distribution of profit shares in the 
population but rather on the income taxation as the mechanism of equal-
izing income. For this reason, these models conceptualize a “social demo-



S
N
L

207

Two Designs for Market Socialism

207

cratic” vision of socialism rather than a Marxist one. What’s new here in 
the social-democratic design is the inclusion of a cooperative ethos in the 
form of Kantian optimization by citizens. Historically, cooperation in the 
(social-democratic) Nordic economies occurred not through Kantian op-
timization (as far as we know) but through centralized bargaining among 
a national trade union federation, the state, and an employers’ association, 
and the “solidaristic wage” policy: for economic analysis of that mecha-
nism, the reader should consult the many articles of Karl Moene with 
coauthor Michael Wallerstein and other coauthors (for example, Moene 
and Wallerstein 1997, 2001; and Barth, Moene and Willumsen 2014). In 
the Nordic economies, firms remain, in the main, privately and unequally 
owned, and income equality is achieved through income taxation and the 
solidaristic wage.
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f o u r t e e n

An Economy of  
Worker-Owned Firms

14.1 Introduction

In the market-socialist models of chapter 13, firms were owned by citizens 
and the state. In the model of this chapter firms continue to maximize prof-
its, but these are distributed to the firms’ workers in proportion to their labor 
contributions. In addition, workers are paid market wages for their labor 
contributions. We also introduce two occupations, where each worker sup-
plies one kind of occupational labor to the firm. Multiplicative Kant ian 
optimization by workers in their labor supply decisions, along with price-
taking behavior and profit-maximizing firms, delivers a one parameter fam-
ily of Pareto-efficient equilibria.

The model contrasts with the usual conception of the worker-owned 
firm, in which firms are supposed to maximize value added per worker, 
which is distributed to workers according to some formula but workers are 
not paid wages (see Drèze 1993).

14.2 The Model and the Game

There is an economy with one good. There are two kinds of labor—two oc-
cupations. The good is produced by a concave production function G(E,D), 
where E and D are the levels of the two occupational labor supplies. We 
simplify here by ignoring the capital input.

There are n citizen workers, partitioned into two elements:

I i E D n I

I j D E

i i

n j n
1 1 1

2

0 0

01

= > = =
= >+

{ | }, #

{ |

and

and 11 0 2 2
+ = =j n I}, # ,
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where E Di i( )or  is the endowment of labor the agent has in the E (or D) 
occupation. We index the workers in the first occupation by i = 1,…,n1 
and workers in the second occupation by i = n1 + j, j = 1,…,n2. Indi-
viduals have utility functions of the form ui(x,E) (for i = 1,…,n1) or ui(x,D)  
(for i = n1 + 1,…, n1 + n2), depending upon the kind of labor they possess.

The economy uses markets, with three prices, (p,w,d), p being the price 
of the good, w the wage of E labor, and d the wage of D labor. There is one 
firm, using the production function G. The firm maximizes profits. The 
profits accrue to workers in proportion to their labor supplies, as follows. 
A fraction λ of profits will be divided among the E workers in proportion 
to their labor contributions, while fraction 1 − λ of the profits are divided 
among the D workers in proportion to their labor contributions. λ is an ex-
ogenous parameter of the model. Thus, for instance, the income of a worker 
of type 1 (that is, i I∈ 1) will be:

 wE
E
E

i
i

S+ λΠ , (14.1)

where Π is the firm’s profits and E ES i

i I

≡
∈
∑

1

. The analogous expression 
holds for workers of type 2.

Given prices, consider a game V1 whose players are the E-type workers. 
We are given a total labor supply D̂S by the D-type workers. The payoff func-
tion for the ith worker of the E-type is:

 

V E E D

u
wE

E
E

pG E D wE

i n S

i

i
i

S
S S S

1 1

1

, ( ,..., ; ˆ )

( ( , ˆ )
=

+ −λ −−
















dD

p
E

S

i

ˆ )
, , for i = 1,…, n1. (14.2)

Analogously, given a total labor supply by the E-type workers of ÊS, consider 
a game V2 among the D workers whose payoff functions are:

V D D E

u
dD

D
D

n j n n n S

i

n j
n j

S

2 1

2

1 1 1 2

1
1

, ( ,..., ; ˆ )+ + +

+
+

=
+ (( )( ( ˆ , ) ˆ )

,
1

1

− − −
















+
λ pG E D wE dD

p
D

S S S S

n j ,  

 for j n= 1 2,..., . (14.3)
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Definition 14.1 A Walras-Kant worker-ownership equilibrium with 
profit-share parameter λ ∈[ , ]0 1  is:

•	 a	price	vector	(p,w,d)
•	 consumption	bundles	(xi,Ei) for all i I∈ 1 and ( , )x Dn j n j1 1+ +  for 

all j = 1,…,n2, such that:
•	 the	vector	(xS,ES,DS) solves the firm’s profit maximization 

problem:
max

. . ( , )
, ,x E D

px wE dD

s t x G E D

− −

=

•	 given	DS, ( ,..., )E En1 1  is a multiplicative Kant ian equilibrium 
of the game V1( ; )⋅ DS  defined in (14.2) for the type 1 workers,

•	 given ES, ( ,..., )D Dn n n1 1 21+ +  is a multiplicative Kant ian equi-
librium of the game V2( ; )⋅ ES defined in (14.3) for the type 2 
workers,

•	 for	worker	i I j I∈ ∈1 2and  we have:

x
wE

E
E

pG E D wE dD

p

x
dD

i

i
i

S
S S S S

n j

n j

=
+ − −

=+

+

λ( ( , ˆ ) ˆ )
,

1

1 ++ − − −
+D

D
pG E D wE dD

p

n j

S
S S S S

1

1( )( ( ˆ , ) ˆ )λ

x x E E D DS i

i

n
S i

i I

S n j

j I

= = =
= ∈

+

∈
∑ ∑ ∑

1 1

1

2

, ,
.

Conceptually, the main difference between this model of an economy 
with worker-owned firms and Jacques H. Drèze’s (1993) model is that here 
workers receive a wage and then a share of profits, whereas in Drèze’s model 
workers do not receive wages but divide up value-added net of the cost of 
capital. In the present economic environment, since there is no payment 
to capital, this means that total firm revenues would be divided up among 
workers. Drèze’s model also has weights by which the labor contribution of 
different occupations are multiplied, determining the shares of value added 
that workers of different occupations receive, but the weights emerge en-
dogenously, whereas in my model, the weights (λ,1 − λ) are exogenous—a 
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policy variable. The endogenous weighting of the labor of different occupa-
tions in my model is accomplished with occupational wages, which emerge 
as part of the equilibrium.

14.3 The First Welfare Theorem for Worker-Owned Economies

Proposition 14.1 Any Walras-Kant worker-ownership equilibrium such that 
the two occupational labor vectors are strictly positive is Pareto efficient.

Proof.
1. By profit-maximization, we have:

 ( , ), ( , )
w
p

G E D
d
p

G E DS S S S= =1 2 . (14.4)

2. The condition that the vector E = ( ,..., )E En1 1  be a multiplicative Kant-
ian equilibrium of the game V1 is:

 ( ) ( )∀ ∈ ⋅ + + =i I u
p

wE
E
E

E u Ei i
i

S
S i i

1 1 1 2

1
0λΠ , (14.5)

where Π1 is the derivative of the profit function with respect to the labor 
supply of type 1. By profit maximization, at the equilibrium allocation,  
Π1 = 0, and so (14.5) reduces to:

 u
w
p

E u Ei i i i
1 2 0+ = ; (14.6)

invoking the fact that Ei > 0, we have:

 w
p

u
u

i

i= − 2

1

 for all i I∈ 1 . (14.7)

3. In like manner, we have:

 d
p

u
u

n j

n j= −
+

+
2

1

1

1
 for all j I∈ 2 . (14.8)

4. By (14.4), (14.7), and (14.8), the allocation is Pareto efficient. ■

14.4 Existence of a One-Parameter Family of 
Walras-Kant Worker Ownership Equilibria

Proposition 14.2 Under standard conditions,1 there exists a Walras-Kant 
worker ownership (WKWO) equilibrium for any λ ∈[ , ]0 1 .
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Proof.
1. Let ∆2 be the 2-simplex. Let p = ∈ ∆( , , ) intp w d 2. Let (X,A,B) be the 

profit-maximizing supply of output, demand for labor of occupation 1 by 
the firm, and demand for labor of occupation 2 by the firm. This exists and 
is unique if G is strictly concave, differentiable, and satisfies the Inada con-
ditions, since the first-order conditions are then:

w
p

G
d
p

G= =1 2, .

2. Given B, we show the existence of a unique vector (( , ),,...,( , ))x E x En n1 1 1 1  
such that:

(i) for each i I∈ 1, 
w
p

u x E
u x E

i i i

i i i= − 2

1

( , )
( , )

, and

(ii) for each i I∈ 1, px wE
E
A

A Bi i
i

= + λΠ( , ) .

It is easiest to see this claim if we define worker i’s utility function over con-
sumption and leisure (measured in efficiency units):

U x E E u x E i ni i i i i i i( , ) ( , ), ,...,− ≡ = 1 1 .

Write �i i iE E≡ − . Conditions (i) and (ii) above now become:

( )
( , )
( , )

′ =i
w
p

U x
U x

i i i

i i i
2

1

�
�

 and

( ) (
( , )

) ( , ).ii px w
A B
A

wE
E
A

A Bi i i
i

′ + + = +�
λ λΠ Π

The locus of points ( , )xi i�  described by (i′) is an expansion path for the util-
ity function Ui in the nonnegative quadrant of the ( , )xi i�  plane, and the lo-
cus of points ( , )xi i�  described by (ii′) intersects the positive quadrant of that 
plane in a nonempty straight-line segment of negative slope. The intersec-
tion of these two loci exists and is a unique point if consumption and leisure 
are both normal goods, for this guarantees that the expansion path begins at 
the origin, is a monotone increasing path, and eventually lies entirely above 
the line segment of (ii′), so it intersects that line segment in a single point.

Hence, the point defined by (i) and (ii) exists and is unique.
3. In like manner, given A, there exists a unique vector 

(( , ),...,( , ))x D x Dn n n n n n1 1 1 2 1 21 1+ + + +  such that:
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(i) for each j I∈ 2, d
p

u x D
u x D

n j n j n j

n j n j n j= −
+ + +

+ + +
2

1

1 1 1

1 1 1

( , )
( , )

, and

(ii) for each j I∈ 2, px dD
D

B
A Bn j n j

n j
1 1

1

1+ +
+

= + −( ) ( , )λ Π .

4. We now define an excess demand function for this economy on int ∆2.  
Denote:

 ∆ = − ∆ = − ∆ = −
∈∈

+

∈
∑∑x x X E A E D B Di i

i Ii I

n j

j I

( ) , ( ) , ( )p p p
1

1

22

∑ , (14.9)

where xi,Ei,Di are the quantities defined in steps 2 and 3.
5. Define the excess demand function on int ∆:

 z x E D( ) ( ( ), ( ), ( ))p p p p= ∆ ∆ ∆  (14.10)

6. The reader may now verify that Walras’s Law holds:

 p x w E d D∆ + ∆ + ∆ = 0 . (14.11)

7. We note that z is single valued. From here on, we proceed as in earlier 
sections.

Define the correspondence Φ : ∆ → ∆  as in equations (11.8) and (11.9) 
above.

8. If p* is a fixed point of Φ, then z(p*) = 0. All three markets clear at 
p*. It is left only to observe that the conditions (i) and (ii) in steps 2 and 3, 
which define the supplies of the two occupational labor vectors, and the 
demand for the consumption good, exactly characterize what it means for 
those vectors to be multiplicative Kant ian equilibria of the games V1 and 
V2. This is true, because condition (i) is the first-order condition for the 
vector E’s being a multiplicative Kant ian equilibrium of the game V1, and 
condition (ii) is the budget constraint of the worker (and likewise for the 
game V2). This shows that the allocation is indeed a WKWO equilibrium 
and p* is an equilibrium price vector.

9. It is left to verify the premises of the Kakutani theorem for Φ. On int ∆2,  
upper hemicontinuity follows from Berge’s maximum theorem. The cor-
respondence is single valued on the interior, so it is convex valued. We skip 
the verification of these properties on the boundary of the simplex. ■
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Remark. Society is free to choose the share λ. More generally, suppose 
there are m occupations, and G m: ℜ → ℜ+ + . Then there will exist equilibria 
for any profit-share vector Λ = (λ1,…,λm) in the (m − 1) unit simplex. For in-
stance, one could choose Λ so as to divide profits equally among all occupa-
tions by letting λj be proportional to the number of workers of occupational 
type j. (Within each occupation, the profits will be divided in proportion to 
effort.) Thus, in this economy, we can achieve an approximation to equality 
of distribution of capital income.

Of course, we have avoided the question of capital inputs and so have not 
had to worry about paying interest to investors. I do not think there would 
be any problem adding capital to the model; however, workers would then 
have to pay interest to investors before dividing the remaining profits among 
themselves.
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f i f t e e n

Conclusion

Positive or Normative?

In this short conclusion, I attempt to evaluate the purpose and use of the 
ideas that I have presented. Are the concepts of Kant ian optimization and 

equilibrium intended to be positive (descriptive) or normative (ethical)?
My references to Michael Tomasello’s work suggest that my intention is 

positive. How can we formalize our understanding of cooperative behavior, 
in the sense that Nash equilibrium and general equilibrium theory have 
formalized our understanding of competitive behavior? I rely upon Toma-
sello to establish the claim that cooperation is essentially unique in humans 
(or at least, it is far more highly developed) in the class of great apes and, 
moreover, that our failure to give it proper attention in economic theory is 
serious.

I intend the concept of simple Kant ian equilibrium to be both a posi-
tive and a normative concept: positive because I believe it is a good model 
of many real instances of cooperation, and normative because I believe 
that the observation “we must all hang together, or . . . we shall all hang 
separately” makes good sense as a recommendation for action in such situ-
ations. (Recall the definition of solidarity from chapter 1.) That good sense 
is formalized by the proposition that in monotonic games, simple Kant ian 
equilibria are Pareto efficient, whereas noncooperative (Nash) equilibria 
are not (Proposition 3.3). And the class of monotonic games includes the 
two great problems with which noncooperative theory deals ineffectively: 
the tragedy of the commons, or the case of congestion externalities, and 
the free-rider problem, or the case of the provision of public goods. So the  
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observation that simple Kant ian optimization solves both types of problem 
efficiently, although restricted to the simple case of essentially symmetric 
games (see Proposition 2.1), is of massive importance.

However, most of this book is concerned with generalizations of simple 
Kant ian equilibrium to cover the case when individuals are heterogeneous 
in their preferences. Here, the central concepts are those of multiplicative 
and additive Kant ian equilibrium (though there are variations on these; see 
chapter 4). I have recounted some just-so stories of how tribes of fishers may 
have learned to optimize in the way proposed in multiplicative Kant ian op-
timization: expand your fishing time only if you would have all other fishers 
do likewise (by the same factor). But I have no evidence that this ever hap-
pened. I cannot argue that additive and multiplicative Kant ian equilibrium 
are intended as descriptions of reality. They are, as far as I know, mainly 
normative concepts. They are prescriptions for behavior.

Evidence that they are natural prescriptions for cooperative behavior is 
that in simple production economies, the equilibria associated with these 
two ways of optimizing deliver Pareto efficiency for the two most vener-
able allocation rules in cooperative societies: division of the product in pro-
portion to labor expended, and equal division of the product. Moreover, a 
somewhat deeper result (Corollary 4.5) is that the only allocation rules that 
can be efficiently implemented in production economies with some kind of 
Kant ian reasoning are mixtures of these two venerable allocation rules. This 
mathematical fact reinforces my conjecture that Kant ian optimization, as 
here defined, is a natural way of modeling cooperation.

To say that the concepts of additive and multiplicative Kant ian equilibria 
are prescriptions for behavior is to propose them as a way of organizing co-
operation among a group of individuals who desire to cooperate. They are 
ethically convincing prescriptions, if the characterization of equilibrium, 
that “nobody desires to alter the vector of efforts by rescaling [or transla-
tion],” appeals as a property of fairness to the individuals in the society. Or, 
in the emissions problem of chapter 11, an even simpler characterization of 
cooperation may have normative appeal: that countries unanimously agree 
on what the cap on global emissions should be and view the shares {ai}
as fair.
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Despite my viewing these more complex forms of Kant ian optimization 
as prescriptive, let me give several historical examples which suggest that 
their descriptive power may be useful. In his interesting book Trust, Francis 
Fukuyama (1995) argues that different national cultures have varying levels 
of trust, which has important consequences for industrial organization. Ac-
cording to Fukuyama, trust is most highly developed in Japanese culture, 
where people extend trust far beyond the family orbit. In contrast, in Sinitic 
cultures (China, Hong Kong, Singapore, Taiwan), trust typically does not 
extend beyond the family. In both Japan and Sinitic societies, firms begin 
as family firms. In Chinese firms, the (male) founder of the firm eventually 
passes the firm down to his son, and he to his grandson, but there is signifi-
cant resistance to drawing in outside management when the firm becomes 
large or when the relevant generation of male descendants does not contain 
a competent manager. When such a point is reached, Chinese firms tend to 
fail, according to Fukuyama. In Japan, there is no such reluctance: outside 
management is brought in, as are outside investors. Consequently, we ob-
serve large private firms in Japan that evolved from family firms, but not so 
in Sinitic societies. Large firms in Chinese cultures, so Fukuyama claims, 
must be formed by the state.1 He also argues that, in France, the monarchy 
effectively destroyed civic associations, which have never recovered, and, in 
the process, destroyed trust beyond the family; consequently, in France, too, 
the state must form large firms, which will not evolve naturally from family 
firms. It is not a coincidence that the Japanese developed a kind of indus-
trial relations that depends upon trust among workers and between workers 
and managers. Executives of American automobile firms were astonished 
when they learned that, on Japanese auto assembly lines, every worker has 
a switch with which he or she can stop the line, emblematic of the more 
cooperative relationship between workers and management in Japan than 
in the United States. American auto firms have since adopted many of the 
practices of Japanese auto firms.

A second example comes from American history. Jon Elster (2017) ana-
lyzes the effort to build cooperation among merchants and farmers in the 
American colonies in the decade 1766–1776 to refuse importing and ex-
porting goods from and to Britain. (Farmers made up 90 percent of the free 
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population.) According to Elster, the free-rider problem among merchants 
was solved through ostracism of violaters, triggered by the reporting of vio-
lations in the press. (This, then, was effectively a Nash equilibrium with 
punishments—or, at least, the fraction of Nash players was nontrivial.) The 
main problem for farmers, however, was apparently not self-interested Nash 
behavior but ignorance of the rate of participation of other farmers in the 
boycott. Elster quotes historian Thomas Breen (2004), who writes: “Until 
the colonists forged a greater sense of confidence that other colonists living 
in other places could be trusted to forgo British imports, they found it hard 
to translate rhetoric about the renunciation of the market into genuine self-
denial and seriously to join utter strangers throughout America in resisting 
a powerful military adversary” (200; the italics are Elster’s). Here, the press 
was vital in providing the necessary information to the farmers dispersed 
around the colonies. If Breen’s observation is correct, we have here condi-
tional Kant ian behavior (or, in Elster’s terminology, a quasi-moral norm).

Having the concept of Kant ian optimization will help us, I believe, to 
see more examples of cooperation in real life. Showing that cooperative 
equilibrium can be modeled in a parsimonious way—that is, without in-
troducing what many economists consider to be exotic arguments in pref-
erences—and demonstrating the strong formal similarity of Kant ian equi-
librium to our central model of noncooperative equilibrium will, I hope, 
elevate the significance of cooperative behavior in our economic life to the 
august status that competitive behavior now occupies. Moreover, as I have 
said, the psychological foundations of cooperation may be weakened: they 
need not include altruism but rather should include what I think is a more 
universal human belief, the conception of fairness as symmetry. My hope 
that the more complicated versions of Kant ian optimization can be used 
prescriptively exploits this view of fairness that is deeply embedded in our 
minds.
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1 Introduction

 1. Tomasello’s view is extreme. Others, such as Frans de Waal (1996) and Philip 
Kitcher (2011), argue that limited cooperation exists in chimpanzees and other 
great apes.

 2. See Kobayoshi and Koshima (2001).
 3. Tomasello disagrees with some who argue that chimpanzees do cooperate in hunt-

ing smaller monkeys.
 4. Formally, the game being played here is the game of chicken. The issue is whether 

to share the captured food peacefully or to fight over it. In chapter 2, we show that 
the cooperative solution to the game of chicken is often to share peacefully, but 
this depends upon the precise values of the payoffs.

 5. The Walrasian model is to be contrasted with the general equilibrium model of 
Makowski and Ostroy (2001), who formalize the nineteenth-century Austrian tradi-
tion in which equilibrium is produced by many bargaining games, where each at-
tempts to extract as much surplus as she can from her opponents. Prices, for these 
authors, are what one sees after the “dust of the competitive brawl clears” and do 
not decentralize economic activity, as with the Walrasian auctioneer. Their model 
cannot be accused of being asocial, although it is hypercompetitive.

 6. Symmetry of the game is clearly sufficient for the existence of a simple Kantian 
equilibrium. It is, however, not necessary. Consider a prisoner’s dilemma, which 
is asymmetric (the off-diagonal payoffs are not symmetric across the two players). 
It remains the case that both players prefer (Cooperate, Cooperate) to (Defect, 
Defect). If the strategy space consists of only these two strategies, then (Cooper-
ate, Cooperate) is a simple Kantian equilibrium. If, however, the game is one with 
mixed strategies, a simple Kantian equilibrium may not exist.
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 7.  “Act always in accordance with that maxim whose universality as law you can at 
the same time will” (Kant 2002, 55). It may be more textually accurate to justify 
the Kantian nomenclature by invoking Kant’s hypothetical imperative. I use the 
term for its suggestive meaning and do not wish to imply that there is a deeper, 
Kantian justification of my proposal.

 8. Readers should not be distracted by the fact that Rawls called himself a Kantian. 
He was referring to his attempt to construct justice as a corollary to rationality, not 
to the specific use of the hypothetical imperative in daily decisions.

2 Simple Kantian Equilibrium

 1. A clip of the scene can be viewed at: https://www.youtube.com/watch?v 
=LJS7Igvk6ZM.

 2. In chapter 3, it will be established that, in contrast, Nash equilibria are typically 
Pareto inefficient in strictly monotone games.

 3. Since the payoffs are von Neumann–Morgenstern utilities, we are free to pick one 
payoff to be 0 and one to be 1 for each player. Thus, the prisoner’s dilemma game 
in mixed strategies is a two-parameter game—here (b,c).

3 Heterogeneous Preferences

 1. We can, more generally, assume the strategy sets are real intervals [ai,bi] or even 
more general sets of real numbers. (Discrete sets are used to model games with a 
finite number of strategies.) Simplicity of presentation is purchased by the assump-
tion that strategy sets are the nonnegative real numbers.

 2. In particular, we have computed the unique K× equilibrium for this economy.
 3. See Abramitzky (2018).
 4. I thank Luis Corchon for this example.
 5. I thank Andreu Mas-Colell for suggesting this application.
 6. We prove (3.67) in the usual fashion, by deriving the Kuhn-Tucker conditions for 

the maximization of one agent’s utility subject to feasibility and lower bounds on 
the utilities of the other agents.

4 Other Forms of Kantian Optimization

 1. It is in fact true that as β → 0, the Kβ equilibrium approaches the K+ equilibrium. 
To demonstrate this, let X G Ei i S( ) ( ) ( )E E= θ  be any allocation rule. Compute that 
the first-order condition characterizing Kβ equilibrium is:

for all i, u G E E n G E ui i S S i S
1 2

2θ β θ β( ) ( )( ) ( ) ( ) ( ) (E E E′ + + ∇ ⋅ +( ) + ⋅ EEi + =β) 0.
  As β → ∞ , this expression approaches:

u G E n G E ui i S i S
1 2

2 0θ β β θ β( ) ( )( ) ( ) ( )E E 1′ + ∇ ⋅( ) + = , or

u n G E G E ui i S i S
1 2

2 0θ θ( ) ( ) ( ) ( )E E 1′ + ∇ ⋅( ) + = .

https://www.youtube.com/watch?v=LJS7Igvk6ZM
https://www.youtube.com/watch?v=LJS7Igvk6ZM
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  Calculation shows this is exactly the first-order condition characterizing K+ 
equilibrium.

 2. The existence of Kβ solutions in these production economies is studied in 
chapter 7.

 3. Some important allocation rules are excluded by the assumption that the shares θi 
do not depend on the function G. For instance, we can characterize the Walrasian 
rule using share functions (see equation (7.7) below), but the shares depend on 
G. For a discussion of what allocation rules can be implemented efficiently with 
Kantian variations, when the shares depend upon G as well as the effort vector, see 
Roemer (2015).

5 Altruism

 1. See Dufwenberg et al. (2011) for a thorough study of Pareto efficiency when pref-
erences are other-regarding. We are concerned here with the special case of our 
simple production economies.

 2. An anonymous social welfare function takes the same value for any permutation of 
its arguments. Informally, it ignores the names of individuals.

 3. The same method extends the proposition to any of the efficient Kantian pairs 
(Xβ,φβ).

6 Is Kantian Optimization Really Nash Optimization under Another Guise?

 1. There is a further way in which the replacement of the two utility functions (u1,u2) 
by the social welfare function V is more convincing in Proposition 6.1 than in the 
example given at the beginning of this section, using the supporting tangent to the 
utility possibilities set. In the case of Proposition 6.1, the function V depends only 
on the utility functions (u1,u2), while the value of a in the earlier example depends 
upon G as well. This makes the Nash representation of the Kantian equilibrium 
in the latter case more natural. We build this requirement into the Nash challenge 
henceforth.

 2. Kitcher (2011, 4) writes: “This ability to form coalitions, and ultimately to con-
stitute a stable social group, expresses a further expansion of those fundamentally 
psychologically altruistic tendencies attributed in the case of maternal care.”

 3. Vj
1 is the derivative of V1 with respect to the utility of the jth player.

 4. Theorem (Hadamard) Let F : M1→M2 be a continuous function between two 
smooth, connected manifolds of ℜ+

n. Suppose that: (1) F is proper; (2) the Jacobian 
is everywhere invertible; and (3) M2 is simply connected. Then F is a homeomor-
phism (and hence globally bijective).

 5. I am grateful to Burak Ünveren for the last paragraph in this proof.
 6. Computed with Mathematica.
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 7. From the quasi-linear example, it is easy to see that given any separable function 
V(a,b), there exist self-regarding preferences u1,u2 such that the social welfare 
 function that “rationalizes” the Kantian equilibrium of the economy (u1,u2) for any 
concave G is V. If V(a,b) = q(a) + t(b), just let u q x h E1 1 1= −− ( ( )), 
u t x h E2 1 2= −− ( ( )). I do not know whether any nonseparable social-welfare func-
tion V has this property.

7 Existence and Dynamics of Kantian Equilibrium

 1. Notice the difference between these best-reply correspondences, which are defined 
on the entire effort vector, and the Nash-best-reply correspondences, which are 
defined on the vectors E−i. The difference is illustrated graphically in fig. 3.1.

 2. It is understood that the argument of the function G in (7.6) should, more pre-
cisely, be written as min( ( ), )ρ ρE n nMs + −1 .

 3. The introduction of the Walrasian rule, in which the share functions θi depend on 
G as well as E, raises the question whether there are other such rules that can be 
efficiently implemented in the Kantian manner. Indeed there are, but I have not 
presented them in this book. For details, see Roemer (2015).

 4. It is a well-known mathematical fact that a contraction mapping possesses a unique 
fixed point and that iterated application of the mapping from any initial point 
converges to the fixed point.

8 Evolutionary Considerations

 1. I thank Burak Ünveren for this result.
 2. We define Region V to exclude N1, to avoid its overlapping with Region VII.
 3. In N4, (1,1) is also a Nash equilibrium strategy, which coincides with the Kantian 

equilibrium. If Nashers play 1, of course they are indistinguishable from Kantians. 
If Nashers randomize among their equilibrium strategies, Kantians drive them to 
extinction.

 4. Punishment, in environments such as the one in this chapter, is biologically altru-
istic because the individual receives no return for punishing his opponent, an act 
that is presumed to be costly to him.

9 Alternative Approaches to Cooperation

 1. The responses were sent to me by Carsten Schröder of SOEP in DIW, Berlin. I am 
grateful to Carsten for including these questions on the survey.

 2. Personal communication with Stefan Penczynski.
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10 A Generalization to More Complex Production Economies

 1. I state the definition for l = 2, to avoid discussion of tangent planes to iso-level 
surfaces of G, which would be needed for higher dimensions.

 2. The citation to Chipman (1965) is thanks to Joaquim Silvestre.

11 International Cooperation to Reduce Global Carbon Emissions

 1. The “standard method” is to maximize the utility of one country subject to feasi-
bility constraints and to lower bounds on the utilities of all other countries. The 
Kuhn-Tucker conditions for the solution characterize Pareto efficiency.

 2. To say that the firm “demands” emissions Ei means that it proposes to emit that 
many tons of carbon.

 3. The unit simplex in ℜ+
n is denoted ∆ −n 1.

 4. This correspondence is introduced in Mas-Colell, Whinston, and Green (1995), 
Proposition 17.C.1, and the derivation of the next several paragraphs is from that 
source.

 5. It is possible to eliminate the {ti} from these conditions, using the fact that workers 
are indifferent as to the amount of labor they supply for each firm. But character-
izations (1)–(3) will suffice for our needs.

12 Efficient Provision of a Public and Private Good

 1. An interior allocation is one where (xi,y,Ei) is positive for all i and E Ei i< . It is not 
necessary that both E Ei i

1 2and  be positive for every i.

13 Two Designs for Market Socialism

 1. Each firm could produce both goods, at the cost of some additional notation.
 2. An allocation is called interior if all private agents consume positive amounts of 

both commodities and leisure and if all supply positive amounts of labor (but it is 
not necessary that any agent supplies labor to both firms).

 3. The assumption G W L dS S
1 0( , ) <  is needed for interior Pareto-efficient allocations 

to exist. If this inequality were violated, then all efficient allocations require that 
K W S= 0 .

 4. Alternatively, the firm may return the full capital Ki to the investor and subtract 
depreciation from profits. This leads to a different distribution of income, but the 
propositions below are unaffected.

 5. The theorem is also true for noninterior equilibria. The restriction to interior-
ity simplifies the characterization of Pareto efficiency, and so it is appropriate for 
pedagogical purposes.
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14 An Economy of Worker-Owned Firms

 1. The main assumption that deserves mention is that leisure and consumption are 
normal goods for all preference orders.

15 Conclusion

 1. Fukuyama was writing in the 1990s; I do not know whether his characterization of 
Chinese firms continues to hold today.
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