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- PART T.-THEORETICAL - 

A4syrmmetrical Frequiency urvem. 

(1.) AN as.yminetrical frequency curve may arise from two quite distinct elasses of 
causes. In the first place the material measured may be heterogeneous and may 
consist of a mixture of two or more, homogeneous materials, Such frequency curves, 
for exar ple, arise when we have a mixed population of two different races, a homo- 
geneous population with a. sprinkling of diseased or deformed members, a curve for 
the frequency of matrimony covering more than one class of the population, or in 
economics a frequency of interest curve for securities of different types of stability- 
r'ilways and government stocks mixed with mining and financial companies. Th e 
treatment of this class of frequency curves requires us to break up the original curve 
into component parts, or simple frequency curves. This branch of the subject (for 
the special case of the compound being the sum of two normal curves) has been 
treated in a paper presented to the Royal Society by the author, on October 18, 1893. 

The second class of frequency curves arises in the case of homogeneous material 
when the tendency to deviation on one side of the mean is unequal to the tendency 
to deviation on the other side. Such curves arise in many physical, economic and 
biological investigations, for exan ple, in frequency curves for the height of the 
barometer, in those for prices and for rates of interest of securities of the sampe 
class, in mo tality curlves, es pecially thle percentage of de~aths to cases in all kinds of 
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fevers, in income tax and house duty returns, and iii various types of anthropological 
measurements. It is this class of curves, which are dealt with in the present paper. 
The general type of this class of frequency curve will be found to vary (see Plate 7, 
fig. 1) through all phases from the form close to the negative exponential curve: 

y Ce-Px, 

to a form close to the normal frequency curve 

y = 

where C and p are constants. 
Hence any theory which is to cover the whole series of these curves must give a 

curve capable of varying from one to another of these types, ic., from a type in 
which the maximum. practically coincides with the extreme ordinate, to a type in 
which it coincides with the central ordinate as in the normal frequency curve. 

It is well known that the points given by the point-binomial (l *+ 1)4 coincide very 
closely with the contour of a normal frequency curve when n is only moderately 
large. For example, the 21 points of (v + -!)2I lie rmost closely on a normal frequency 
curve, and the author has devised a probability machine, which by continually bisecting 
streams of sand or rape seed for 20 successive falls gives a good normal frequency 
curve by the heights of the resulting 21 columns. Set to any other ratio p : q of 
division other than bisection, the machine gives the binomial (p + j)20, or indeed any 
less power and thus a wide range of asymmetrical point-binomials. Plate 7, fig. 2, 
represents, diagramatically, a 14-power binomial machine. 

Just as the normal frequency curve may be obtained by running a continuous 
curve through the point-binomial (2 + 2)" when n is fairly large, so a more general 
form of the probability curve may be obtained by running a continuous curve through 
the general binomial (p + q7)9. As the great and pntly true test of the normal curve 
is : Does it really fit observations and measurements of a symmetrical kind ? so the 
best argument for the generalised probability curve deduced in this paper is that it 
does fit., and fit surprisingly accurately observations of an asymmetrical character. 
Indeed, there are very few results which have been represented by the norinal curve 
which do not better fit the generalised probability curve,-a slight degree of 
asymmetry being probably characteristic of nearly all groups of mzeasuremlents. 
Before deducing the generalised probability curve, it may be well to show how any 
asymmetrical curve may be fitted with its closest point-binomnial. This will be the 
tonic of the following five articles. 

(2.) Consider a series of rectangles on equal base c and whose heights are respec- 
tively the successive terms of the binomial (p + q)flx a/c, where p + q-A. Here a is 
clearly thle area of the entire systemn. Choose as originil a point 0 distant 2c from the 

I J have found it convenient to use the term mode for the abscissa corresponding to the ordinate of 
maximum frequency. Thus the " mean," the " mode," and the " median " have all distinct, characters 
important to the statistician. 

MDUCCCX8Vt.--A. 2 y 
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boiundary of the first rectangle, on the line of common bases, and let Yr be the height 
of the r" rectangle, or 

a ( - 1) .( . . 2) mr+1 r- 

while 
JY o j / c . 

-0 M 'C $ C C C >7 C X C o 

Let us find the values of 
S Y?.G X 0-41s} 

where s is 

any 

integer, for 

values 

of s 

from 

0 to 4. 
It is easy to 

see that YC~~ ~~ X (rs ac 
) 

-" ( P 
'' 

where the operation dl/dq is repeated s timese 

The operations indicated can easily be performed by putting q =e when 

BYr tX (X 0)i } (jje (p + e) }b 

and "he successive values can le found by LELuBNITZ'S theore m. A fter differentiation 
we may put p + q or p + el I. There results: 

> (eXre) ae n} 

Q(Y;i X (re)') ae { 1 A 3wj + 
1 

- 1) <j'X 

(fe X (4e)') oe3 + 7+nq + 6m (n - 1) q 5'- ( 1) (n - 2) q3} 

(yrC X< (r)4)I) oc4I1 + 15nq + 25n (n - 1) 22 + i0in (n - 1) (n -2) q3 

+n(n- 1)(n - 2)(n- 3)q4}. 

Let N G be the vertical thromtgh the centroid of the system of rectangles, then 
clearly 

ON = (y~e X rc)/om G {it + n3q~ 
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We shall now proceed to find the first four moments of the system of rectangles 
round GN. If the inertia of each rectangle might be considered as concentrated along 
its mid vertical, we should have for the s" moment round NG-, writing e -c (1 + nq), 

aps- = y.c X (re -dis 

The resulting values are 
u2 = npqc' 

U3= nn (p -q) C3 

n= Tipq {1I + 3 (n - 2) pq/ c4, 

whence, remembering that p + q = 1, we find that pt and q are roots of 

z2 z + 4(02 _4) I- - - - 4 (+82 -1) H2 -> (4t , 

n=-3_ v'{ 2 (3y -_,t) ft2 + 83/t,} n = , c = _ _ _ 

("32 ;1.) - + t f2 

Thus, when M2 [3 and Ik4 have been calculated for the frequency curve, the 
elements of the point-binomial are known. These results were given by me in a 
letter to 'Nature,' October 26, 1893. 

They give quite a fair solution so long as n is large and c small, ie., so ]ong as the 
asymmetry and the "excess " (' Phil. Trans.,' vol. 185, A, p. 93), measured respec- 
tively by 3 and u +- 3/A (which vanish for the nor-adl curve) are not considerable." 
In many cases, however, they are considerable, and the following solution is perfectly 
general. 

* If yo denote the largest terz in (p + q)f and yj the tth term beyond it, then ri application of 
STIRLING'S theorem-if n be large-shows that 

Yt/yo ( n ) ( ? ) t-4 

Take 

log ?u (t -pn$ - l)log (1 _ 

log V = n (- 
qq1) log 

I1 
+ - 

and expand the right hand side in powers of t, we find 

oo'n =t(l + 2 2-~n{'-I-I-.20(l -) ) i -etc. ~~\ 2yn,~ ~ '2pn _21 nj,'3n/ n ~ I 2pn - '2pn 

Hence, remembering that p + q 1, we Iia e 

t 
(-oq) Iv - -pq - ( P q) l1Q) log uV =- q,- 4-9-- p- + - (Sc-22-- aVzq 

12pfq3 - 3-q = 2(pq + etc. 

Now, making use of the values given in ? 2 for t,(2, i3,d I , and Writing t x C X, and yj y, 
we find 

2 Y2 
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(3.) To find the nth moment of a trapezium ABCD about a line parallel to its 
parallel sides, y, and y2 being the lengths of the parallel sides, x1, x2, their distances 
from the mnornent-axis, and x2 - c. 

Y2 

0 

Let M, be the uth mioment. Then 

yX' y CIX 

_ .12 - 3 1n+ 2 - x _+1 

xQ-~~~~l YX2- n?1 
2"' 

X, xi n + 2 c2 n2 /- 

(x,~~~~~~t nc n n a ) n(q- -)n2) 34 

- y] C + _-X 'C2+ f (?j)II2C] + Ic, _ - 2 3 n3 4 
i2 1 [3 [5 

(4.) Now consider a curve of observations made up of a series of trapezia on equal 

bases, as in the accompanying figure: 

?1=Yo, -2,t2(1 1 ,; X e~ X e 6-~1''' 3 3P2)) X e-' (,-(3-p2) (3 2)'-i(3P2)P]) X etc. 

where 31- pA/,3 and 3 = P4 2. 

This appears to be the more general form of a result given, by Professor EDGEWORTH, 'Roy. Soc. 

Proc.,' vol. 56, p. 271. 
For the normal curve [13 0, p= 3p1,u2; henice, if p does not differ much from q, p3 and 132 - 3 will 

be small, and we may neglect, their products with x1 V'1,. Thus approximately 

y = yo e-e 

This agrees with Professor EDGEWORTIn'S special case if we expand the second exponential. fis 
4" negative frequency " is accounted for by the fact that he has only taken the first terms of a long 

8eries, i.e., 

y yo e - 
x1/22 { - 2_(_ 

I have not considered this form of the skew-curve at length, because it is only a first approximation to 

the more general forms considered in this pap1er, and further, because it is only applicable in practice 

within extremely narrow limi;ts. 
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tf _ A, __ * 

Yr 

Here, y, y2, vs, . . . are the frequencies of deviations falling within the ranges 

x1 ? lC, X2 ? 2-hc, x3 ? 12c... x. ? I hC . . ., and the tops of the ordinates are joined 

to form a frequency-curve in the usual manner. 

Let A',, be the nth moment of the system. of trapezia about thee line Oy, then 

S{2_8r2 (xi.nc + n( - 1) i-2 3 + n (n -1) (n -2) (n_-3) n-4 ? + M. - S 2yr + XT 0 4_ xi 2,. ;+.... 

In particular, if we take Oy in the position O'y' at distance c from y1, we have 

Xr IT, and accordingly, 

A',, c: + (N'1 ? 1 N',,2 + 1) ( .-_2.(----- -) - 

M'n (- i)(m - 2) (N' -- ) (n 4) (n- 5) etc.) 
+ n ({t (?C-) /) N20160 n-6 + etc4 ) 

where N', = S (yrs). 

In particular, 
o cN'0, 

M N'1 = N' 

M'2 -c (N' +? 1N'o) 
M'3 c4 (N'3 + I N'1), 

M'4 - C5 (N'4 + N'2 + '15N), 

M15 c6 (N'5 + 5iN'3 + -N'1). 

When we puto M'8/M'0 = h and N',/N'o = V, these reduce to 

I , 

(L 1. Cv S 

V 2 -C (12 + 'A0), 

13- G' (7V3 + 2 V'I) I 

1-t4= C4 (V/4 + V12 +') 

V5 - c5 (v'5 + 357v'3 + h-K1) 

Now let tk, be the value of the nth moment of the trapezia, systeim about the 

vertical through its centroid divided by its area. 
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We have: 
v 

t ,l (n t)) '(n 
2) 

-i s 
/ / ~~ 1.2 n-21 -2- ---i n3-+ etc. 

Thus we find: 

= 0, 

2= C' (V/2 V 1 + t-D) 

v - C3 (V'3-SV '/1 V'.2 4 2v z-"), 

, c ( V'I- 1 v8 + 6" , { 2 3 2 - 

u- (V'5 - C5(V 1V4 + V;2 V'3 ' 107,3 /2 V 4v + { 8- 5V"1 V'2 + '3- v1})@ 

Comparing these results with those given in the Phil. Trans.,' vol. 185, p. 79, 

Eq. (4), we see that treating the enurv as built-up of trapezia instead of loaded 
ordinates introduces the parts into the valuels of th-e ju's enclosed in curled brackets. 
These additions are small, but in Xnany cases quite sensible, Since the series of 
trapezia gives in generail a closer approach. than the series of loaded ordinates to the 
frequency curve, and, further, since the calcalation of t1ese additional terims is not 
very laborious, it will be better feor the ffmttore to calculate, the moments of any 
frequency curve from the above modified formtula.e 

(5.) Returning now to the pointbinomial, we have 

V1=1+ nq, 

Y2 =1 + 3nq - n (n ) q2, 

V3 1 + 7nq + 62n (nt 1 ) /2 l F (n - 1-) (n - 2) q 

I + 1 5 :q - 1 ) (n t 2) q 

Th us: 

2 C~ (npf + 6 )? 

13 C npq (q p)9 

/4 4 C (-l5 -I np ( 2 +- 3 (nt A ?) 

If, instead of taking trapezPa, xe had taken a series of rectangles, but not, as in y 2, 
concentrated their areas along their aixes, ve shonld have found the following 
system 

c3 ? 2Qi 

I1f-4 (> -I-( n jx96. (39 -1 3 (nX C 2)pq))@ 
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Hence if we write: 

P12 C, (npq + cl), 

KS =i 
- C ni) q ( q 

P) 

C4 (E2 + nTp)j (E3 + 3 (n 2) pq)), 

we have: 
For trapezia: e2 -3 15 2, 

For rectangles: E-, - 3 1,5, 

For loaded ordinates: 0 0, e6 ?) E3 1, 

and the above general system may be applied to all cases. 

Writing 

Z= , Pi and P , 

we have by elimination the cubic foi- z:, 

z3(6 + 3 S1-21Q) ?z2,2c3-3+ 9 1,::L 
- 4)% 

+ z (2Ec + 9e 1cj 21c12El) + 3/31cEl 0. 

The remaining constants of the binomial are: 

la1 /1z (I + Cl/3) 

-q _( - (1z:(l If c1/z)3), 

and 

Z + C1 

(6.) Let us illustrate these results by a numerical example. Plate 8 gives 

Dr. VENN'S curve for 4857 barometric heights. Aotiog the horizontal, 1 cm. equals :1" 

of height of barometer, and the scale of frequency is 1 sq. cm. 28'304 observations. 

The centroid vertical and the second, third, and fourth moments about it wvere found 

for mer by the graphical process described, 'Phil, Trans.,' vol. 185, p. 79. We have 

the following results: 

X This result seems of considerable importance, and I do not believe it has yet been noticed. It gives 

the mean square error for any binomial distribution, and -we see that for most practical purposes it is 

identical with the value Vnpq, hitherto deduced as an a pproxi3cttc res lt by assuming the binomial to 

be approximately a normal curve. 

t If we take z + cl = X the fundamental cubic reduces to 

(6 + 3P1 - 2J32) X3 - (2 X) X2 + QX - 0, 

a form in which the coefficients are easily calculated and the nature of the roots discriminated. 

t By Mr. G. U. YULE, who has given me very great assistance in the laborious calculations required 

in the rleduction of frequency curves. We have used, with much economy of time, the " Brunsviga " 

calculator. 
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= 171'6, 2 10'14, 

l 5=95, 326'34, 
all in centimetre units. 

These give 

Al = '2440L, 92 '[-J739. 

Hence for trapezia, 
'3842; -3 '749917z2 + 018008z + '003389 0, 

and for rectangles, 
.3842z3 - '87496z2 -003832z + '000424 0. 

These give the following solutions 

Trapezia. Rectangles. Lines. 

z 192516 2 28034 2 6028 
n 19 379 238983 28 5293 
p '8881 '8936 '89985 

'1 L19 '1064 '10015 
c 2 2017 2 0712 1 974 

77 94 82 85 86 93 
d 6 976 7 3562 7 614 

Here d = c (1 + nq) gives the, distance of the start of the point-binomial from the 
centroid vertical. The three point-binomials are therefore 

77'94 ('8881 + 4l1l9)1'l379 

82'85 ('8936 + l164) 

86'93 ('89985 + -10015)28 5293 

respectively. 
These three point-binomials are represented in Plate 8, fig. 3. It will be noticed 

that they all lie very close to the barometric curve; they would be still closer if that 
curve were a real curve and not a polygonal line. Thie total areas between binomial- 

polygons and observation curves, treating all parts as positive, are for the three cases, 
10 '3 10'5) 1l'0 sq. centims. respectively, or taking the base range to be 23 centirns,, we 
have mean deviations from the observation curve of '448, '457, '478 in the three cases 
respectively. Thus the method of trapezia gives slightly the best result; the method 
of concentrating along ordinates the worst result. The total area of the curve being 
171'6, we have front another standpoint, mean percentage errors* in the ordinates 
of about 6'03, 6(06, and 6'3, respectively. The generalised probability curve, if fitted 
to the same observations, gives an areal deviation of 7 sq. centims., or a percentage 
error of about 4. Thus it is very nearly one-third as close again as the point-binomials. 

* The " percentage error " in ordinate is, of course, only a rough test of the goodness of fit, but I have 
used it in default of a better. 
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As typical samples of mean percentage errors considered by various statisticians to 
give good results, I may note the following, the frequency being about 1,000 or 
upwards:-A1RY, 9; MERRIMAN, 13.5; GALTON (Anthropometric), 7 to 15; WELDON 
(Crabs), 617, (Shrimps), 8 8; STIEDA (Skulls), 7 6; PORTER (School Girls), 717; PEROZZO 
(Recruits), 6 8; BRADLEY'S observations, 5 85; PEARSON (Lottery), 61 7, (Tossing), 6 6. 

It is therefore clear that our point-binoinials and generalized curve may be con- 
sidered to give good results.* It will be noticed, however, that a little difference in 
the method of calculating the point-binomials leads, without' much alteration of the 
percentage error, to a considerable change in their centroid-positions and the magnitude 
of their constants.t Generally speaking we may conclude that in round numbers the 
barometric frequency corresponds to the binomial ( 9 + .1)20, or to the distribution of 
zeros when 20 ten-sided teetotums, marked 0, 1 . . . 9, are spun together. There is 
an apparent upper limit to the height of the barometer, and its deviation below the 
mean can be much greater than its deviation above. At the same time within the 
narrower range round the mean, the frequency of a high barometer is greater than 
the frequency of a low barometer; the odds against a " contributory cause" tending 
to a low barometer being about 9 to 1. I propose to investigate a wider series of 
barometric observations, in order to test how far the conclusions which may be drawn 
from Dr. VENN'S statistics are general.T 

A rather interesting point may be considered at this stage, Is it always possible 
to fit a point-binomial to a series of observations with a chance frequency ? Can we 
better the normal curve by a point-binomial ? The answer is Yes, if the fundamental 
cubic in X (second footnote, p. 351), has a real positive root. Noxv for the normal curve 
2 (3/22 - /k4) It2 + 3.L32, or 6 + 3/31 - 2/32 is zero. For the loaded ordinates c will 
only be real if this expression be positive. It may, however, take small negative 
va'lues for the trapezia, in which. case X itself will be small and only within narrow 
limits give suitable values for n. 

Hence, for real values of n, p and q, it is impossible to fit a point-binomial to a 
series of observations for which 6 -- 3,31 - 2,83 has a large negative value. The normal 
curve, for which go-3 jut,, is nearer to any such observations than a point-binomial. 

For example, by aid of the modified expressions given in this paper, p. 350, we have 

* As another manner of testing, compare the ten-points of the point-binomial for lines with obser- 
vations: 

Theory. . 56 15 9 21P8 19 1L9 5 7 2 1 *7 2 03 
Observation . 5.7 158 221 18-8 12) 58 2 3 1 1 2 *00 

t A curve drawn through the 30 points of the three point-binomials would be very close to the obser- 
vations. As a matter of fact, the skew probability curve passes very near to all 30 points. 

L [Miss A. Lee has since calculated the constants of three yea,,s of Eastbourne barometric observations 
for me. While n and c differ widely from the Cambridge values, she finds p = *89375, q = *10625, a 
striking and suggestive agreement.] 

IDCC(:XCV.-A. 2 z 
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for the' data given for Professor WELDON'S Crab Measurements, No. 4, 'Plil. Trans.,' 

A,;vl(. 185, p. 96. 

P2 =736759, = 3 4751, A4 = 184'3039. 
Hence, 

1 = 3U3 = 0267022, 

= = 34:12807. 

Thus 6 + 391 - 2/3 is positive, and accordingly no rational point-binomial is likely 
to fit as well as the normal curve. As a matter of fact the fundamental cubic is now 

'17603z3 + 1l045327z2 y 033773z - '0003709 = 0. 

The two negative roots of this equation give imaginary value for p and q. The 
small positive root gives p greater than unity and q Legative, n is also negative. 
Although I can give no interpretation to these results, it seemed well to complete in 
the latter case the solution and test how near the resulting point-binomial fitted the 
curves. I found 

z = 00866, p = 1 19268, q = : 19268. 

n = 037685, c 6G61662, d _66645. 

These give for the binomial 

li50 0983 (119268 -19268)-037685 

or, 
151i89 (It- 161552)-037085 

or, 
151-89 + -92532 + -07756 + &c. 

Thus the sensible part of the binomial to the scale of our figure is a triangle. I 
have drawn this binomial, see Plate 8, fig. 4. The reader will mark a fit very close 
on the whole to the observations. We have the following percentage mean errors of 
the ordinates: 

Normal curve, . 67, 
Skew probability curve. 4.4, 
Binomial v e e e e . . e 10*5v 

We may conclude, therefore, that even if our binomial constants have unintelligible 
values, yet our method will give, in many cases, a closely-fitting polygonal figure. 
This remark should be read in connection with Professor EDGEWORTH'S somewhat 

divergent views" on fitting chance distributions with curves other than the normal 
error curve. It is possible in almost every case to find simple combinations of lines, 

See ' Phil. Mag.,' vol. 334, p. 24, etl seq., 1887. 
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circles, or parabolas of various degrees which give results extremely close to any given 
set of observations. 

For example, taking the range of frequency to be sensibly r times the standard 
deviation, we have the following close expression for the error function by harmonic 
analysis 

Y = YO 399 + *482 Cos-- + :109 cos + '009 cos 

Here yo is the maximum ordinate, x any deviation, and a- tbe standard deviation. 
A couple of wave curves* will thus very frequently give us a close approximation to 
a set of statistical measurements, quite as close as statistical practice shows the error 
curve to be. 

The above expression further allows the normal curve to be constructed by aid of 
scale and compasses-geonmetricaelly, or its ordinates calculated from a table of cosines. 

Another example of the fitting of a point-binomial will be found in Part 2, ? 34, 

Pacuper Percentages. 

(7.) Consider the point-binomial e X ( + )I, where e is any constant, and 
suppose a polygon formed by plotting up the terms of the binomial at distance c 
from each other. 

Then, corresponding to x, ='rc, we have 

n (n-1)(it-- 2) I s r 2) 

and 

-Y1 + 1_ c C (n_ + 2) (Xa. + Xn +i () (, +II. + 1) 

2 (Yrq1 + Yar) X C I (n + 1) C2 - (1) c2 

if r= x;. - l-X(n + 2). 

Now (yr+ y.)/c is the slope of the polygon corresponding to the mean ordinate 

(yr?1 +A y,), or, writingt o-q - X I(n + ) e2, 

slope of polygon 2 x mean abscissa 

mean ordinate 2f2 

It is often suLfficient to take 

Th gence o sa 

+ 

? 

cos - 
- 

A- cos 

)- The divergence of this value of a2 from the ordinary value 2 x 2 x n is to be noted. The two agree 
sensibly if n be great. [Drawing on a large scale, however, the poinlt-binomial (2 + D'0? and the two 
normal curves with standard deviations of 1'5811 and 1 6533, I find that the latter has a mnean percentage 
error of only 1-76 as compared with 5'1 of the former. Thus it would appear that the normal curve 
corresponding to V/(n + 1) pq fits the point-binomial closer than one with tile standard deviation /Vnq 
usually adopted.] 

2 2 
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Now compare this property of the polygon with that of the curve: 

We have by differentiation: 
slope of curve 2 abscissa 

ordinate, 2c' 

hence: th s binomi~al polygon and the normal curve of frequency have a very close 

relation to each other, of a geometrical nature, which is quite independent of the 
magnitude of n. In short their slopes are given by an Identical relation. By a 
proper choice of or and yo, we can get the normal curve to fit closely the point- 
binonmial, owing to this slope property, wlithout any assump,)tion as to the indefinitely 

grect value of n. It is this geometrical property hwich is largely the justification for 
the manner in which statisticians apply, and apply with success, the normal curve to 
cases in which n is undoubtedly small. No strekss seems hitherto to have been laid 
upon the fact that the normal curve of errors besides being the limit of a symmetrical 
point-binomial has also this intimate geometrical relationship with it.i 

(8.) Now let us deal with the skew point-binomi'al 'in precisely the same manner as 
we have dealt with the symmetrical binomial. Taking its form to be e (p + q)fb, we 
have, if x, r X c and X =q /p 

+- Yr 2 (n - 7' + 1) X/r_- 1 2 (x ( ? 1) - X (x + 1)) 

2(+I ? ) c ( - +1r ? - ( + 1) + r (1 )) 

Let us write A.ry yr +, Y yr, AX c. 
Yr + _2 (yr 1 + Yiy) ,X) + I (XI. + 4 + X~q). 

Then Xr+J0 = r + 1, and: 

: The following table shows the closeness of frequency within a given range as determined by the 

bitomlals:- 

Frequency per ceit.A. 
Range of Range of ~~~~~~~~Norm 1 curve. 
deviation. 

3 24 1 23 24 
5 37 37 38 
7 50 52 52 

1-1 71 73 73 
15 87 87 87 
21 96 96 96 
33 100 100 100 

Here the distribution of 100 aroups each of 100 events is seen to be practically the same whether we 
take n =10 or n-=co. 
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Aiy+_* X(Thl)+(l?XU)(Xrc -2) 

or, if X'} + BX.+ c( +qg(n + 1)\), 

pq (n + l + + ) X} -1 

2 1+2~~~ 

-aC + Sr 

if 2 and~~~A=P fll/ l)C 

2 ?lo (1 + /)Y) cVx 

(9.) This curve accordingly stands in the samue relationship to the skew binomioal 
als the normal curve to the symmetrical binomial. * There are several points, however, 
to be considered weith regard to it. In the first place it is usually assumed that nHis 
indefinitely great and c indefinitely small, and then it is supposed that wue may 
neglect (p -- q) cX',. + W as compared with pq (n + 1) c2, and so wve deduce the normal 
error curve whether p9 be equal to q or not. But I contend that this is unjustifiable 
except for very small values of X' + . When the deviation X' is considerable and 
c vanishingly small, X' will be an indefinitely great multiple of c; c must be in fact 
the unit in which X' is measured and unless p9 q, the ordinarly normal curve is only 
an approximation, even if n be large, near the maximumn frequency. In the next 
place, when we76 speak of n being large, are we quite clear as to what we mean in the case 
of physical or biological frequency cuarves ? We speak of a mlultiplicityr of small 
" causes " determining the actual dimensions of anz organ, or the size of a physical 
error, or the height of the ba~rometer. But it is less clear why this multiplicity 
should be identified with the infinite greatness of n. If we take Dr. YENN' S 
frequency curve for barometric height, we see that the closest point-binomlial is bay no 
means consistent with either ps = q, ord with n being indefinitely great, Further, 
mnany statistical results in games of chance are given with great exactness by the 
normal curve, although wve are then able to show that n is quite moderate. 

Nowt, it is true that the biological and physical statistics to which we are referring, 
give essentially continuous curves but it does not seem to follow of necessity that : 
must be infinite; while their frequent skewness sufficiently indicates that the bneglect 

t Note again the deviation of the constant pq (n + I) 2 ferom its usually adopted valae pqnc2 i 
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of Xr +l as compared with a is unjustifiable. Thus, the maxinum. of a fever 
mortality curve cannot be an infinite distance from birth, which limits the curve in 
one direction, nor an age-at-marriage curve have a maximum frequency infinitely 
distant from the age of puberty, nor a frequency of interest curve separate its 
maximum, between 3 or 4 per cent., by an infinite distance from, 0 per cent. It is 
clear, therefore, that if such frequency curves as those referred to are to be treated 
as chance distributions at all, it would be idle to compare them to the limit of a 
symmetrical binomial. We are really quite ignorant as to the nature of the contri- 
butory " causes " in biological, physical, or economic frequency curves. The continuity 
of such frequency curves may depend upon other features than the magnitude of n. 
If I toss twenty coins, a discrete series of 0, 1, 2, 3, . . 20, heads is the only possible 
range of results. Each individual coin, here representing a " contributory cause' 
can only give head or tail, and so many whole coins must give head, so many tail. 
If I want to make any ratio of head to tail, I have to take an indefinitely great 
number of coins, for each " contributory cause " must give a unit to the total. But 
it may possibly be that continuity in biological or physical frequency curves may 
arise from a limited number of " contributory causes " with a power of fractionizing 
the result. We cannot conceive on the tossing of 20 coins that 13 5 will give heads 
and 6 5 will give tails, we are obliged to deal with 200 coins, 135 giving heads and 
65 tails. Yet the two things are not identical. The former corresponds to a value 
intermediate between two ordinates of (- + I)20, and the latter to a definite ordinate 
of (2 + 1)2?? So long as we remain in ignorance of the nature and number of 
" contributory causes " in physics and biology, so long a's we do find markedly skew 
distributions, it seems to me that we must seek more general results than flow 
from the assumption that p = q and n == o0. The form of curve given in ? 8 above is 
suggested as a possible form for skew frequency curves. Its justification lies 
essentially, like that of the normal curve, in its capacity to express statistical 
observations. 

(10.) But it must be noted that the generalised probability curve in ? 8, although 
it contains the normal curve as a special case, is not sufficiently general. It is 
limited in one direction, indefinitely extended in the other. This limitation at one 
end only, corresponds theoretically to many cases in economics, physics, and biology. 
But there are a great variety of cases in which there is theoretical limitation at both 

C, 

B 

ends; that is to say, there is a limited range of possible deviations. For example, 
let a trapezium,) ABO:D, of white paper be pasted on a cylinder of black surface with 
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ef, the axis of symmetry parallel to the axis of the cylinder. Then, if the cylinder 
be rotated, we shall have a series of grey tints from a darkish e to a lighter f 
Nows, if we ask several hundred persons to select a tint which would result fro 
mixing the tints at e and f, we shall obtain a continuous frequency curve, falling, 
however, entirely within the range e to f Or, again suppose a frequency curve 
obtained by plotting up) the frequency of a given ratio of leg-length to total body- 
length, or of carapace to body-length. Here the range must lie between 0 and 1. 
It is not that other values are excessively improbable, they are by the conditions 
of the problem absolutely impossible. Hence, it is clear that the curves obtained 
by Professor WELDON and Mr. H. THOMPSON in the case of shrimps, crabs, and 
prawns, can only be approximately normal curves, even if it were possible for the 
ratios to run from 0 to 1. But as a matter of fact, the possible range is very 
much smualler. We may not be able to assert, cl priori, what it is, but for an 
adult prawn to have a carapace -2 or -ilo) of its body-length, or a man a leg 
2 1 or 

-2-0- of his body-length, may be regarded as impossibilities; they are abnor- 
malities, which could hardly survive to the adult condition. Precisely the same 
remarks apply to skull indices, and probably to the relative size of all sorts of 
organs in the adult condition. We may not know the range, _ priori, but we are 
quite certain that one exists, and it is a quantity to be determined-just as the mean or 
the standard deviation-from our measurements themselves. We may take it that in 
most biological measurements of adults there is al range of stability, so to speak, 
organs not falling within this range are inconsistent with the continued existence of 
the individual, with the assumption that he has lived to be an adult.* Nor is this 
question of -range confined to biological statistics. A barometric frequency curve 
must show the same peculiarity; there are excessively low and excessively high 
barometric heights which would be not only inconsistent with the survival of any 
meteorological observer, but also with the existing features of physical nature on 
this earth. In vital statistics we findd precisely the same thing, a curve of percent- 
ages of mothers of different ages for the children born during any year in a country 
would be definitely limited by the ages of puberty and the climacteric, which cannot 
be pushed indefinitely towards childhood and senility respectively. Again in disease 
and mortality curves, while the lower limit of life is clear, it is highly probable that 
an upper limit exists, if we can only fix it by investigation of our statistics them- 
selves. A man of the present day, as now organised, may be able to live 120 years, 
perhaps, but we have exceeded his vital possibilities if we take, say, 200 years. 

Thus the problem of range seems a very important one, it theoretically excludes the 
use of the normal curve in many classes of statistics; it is quite true that, for 
many practical purposes, frequency curves of limited range may be sensibly identical 
either with unlimited curves, or even with normal curves, but, in other cases, this 

* Absolute malformations, congenital, or due to postnatal accident are excluded. Abortions or 

amputations would be naturally exclulded from our measuremenlts, 
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is not so, and under any circumstances the limited curve may actually give information 

as to the possible range-the " limits of stability "-which is itself of great value. 
We have, then, reached this point: that to d'eal effectively with statistics we 

requitre generalised probability curves which include the Jfctors of skewness and range. 
The generalised curve we have already -reached, possesses skewness, but its range 

is limited in one direction only. 
Accordingly, we require the following types of frequency curves 
?7Lype I.--Limited range in both directions, and skewness. 
Type 11.-Limited range and symmetry. 

Typ:e III. -Limited range in one direction only and skewness. 
Type I V.- Unlimited range in both direct ions and skewness. 

l'yqpe F.-Unlimited range in both directions and symmetry. 
Type V. is the normal curve; Type IV., with slight skewness, has been dealt 

with by POISSON in the form of an approximative series." Type III. has been given 

above, it was first published by male without discussion in 'Roy. Soc. Proc.,' vol 54, 
p. 331. 

We can now turn to the general problem. 
(11.) A very simple example will illustrate how a frequency curve, with limited 

range and skewness, may be considered to arise. Take n balls in a bag, of 

which pmi are black, and qn are white, and let r balls be dr-awn and the number 

of black be recorded. If r>pn, the range of black balls will lie between o and pn; 
the resulting frequency polygon will be skew and limited in range. This polygon, 
which is given by a hypergeometrical series, leads us to generalised probability 

curves, in the same manner as the symmetrical and skew binomials lead us 

to special cases of such curves. If we consider our balls to become fine shot, or 

ultimately sand, and suppose each individual grain to have an equal chance of being 

drawn, we obtain a continuous curve.t It is not, however, impossible that, could we 
measure with sufficient accuracy, many physical as well as biological statistics might 
be found to proceed by units, much as in certain types of economic statistics we are 

not troubled with fractions of a penny. For this reason we shall keep our results 

in the most general form, and obtain a curve approximating to the hypergeo- 
metrical series referred to without any assumptions as to the relative magnitude of 

the quantities involved. 
We easily obtain for the series giving the chances of ri, r-l, r-2 ... 0 black 

balls being drawn out of a bag containing pln black, and qn, white, the expression 

* aSur la Probabilite des Jugements," chapter 3. 

t p pints of red sand and q pints of white sand are put into a vessel, and r pints are withdrawn. We 

have if r > p, a perfectly continuous frequency curve for red sand withdrawn ranging between o and p 

pints. We are here supposing no "perfect mixture " of the two kinds of sand, but theoretical equality 

of chances for each grains 
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pnA (n e- 1) (p pn- 2) . . . (_pn-- i+ t) 

n(n-1)(n-2)...(n- + 1) 

( ?r qn-iw + ?1 +r 21) (_ qn (qnb-l) 

(_-_1)_(_-2) qnj(qq n-1) (qn- 2) 
1 I. 2 . 3 (_pg - r + 1) ( pn -r + 2) (4pn - 9 + 3) * 

If y, be the sth ordinate of this polygon, and we suppose these ordinates plotted up 
at distances c apart, we have 

Ys+i _ r-s+ 1 qmt-s+ 1 

Ys s ,, +S' 

S8 =S X C, Xs+I-= (S + 

XsT+ = C (S + 2) 

Thus 
2 ( 

Ys --Ys 2 ___ + 1)(1I4qn)-s(n+?2) 

12- (Ys-i ++ y) x c c (r? 1)(1 + qn) -s2 (r + 1) + n(q -p)} ? 2s2 

(+ 1)(1?qm)- ((I ?q -) (n + 2) 

(r+1) (1? + q) -2 + 1) + n (q p)} 2 

Write 

X s a Xs+ 1 - (e + - )-- 
-2 ) 

and we find with our previous notation 

Asqy 1 __ __ _ _-____+_______) 

&x Ys+j + OAxS + + 183X'I .+) 
where 

G2 (r + 1) (m - r + 1) (1 + qn) (1 ?pi) 

I (?1 ~~~+ 2)3 

m cn (--2r) (p-) 1 

2(n +2)2 3 + 2 

Now, if we attempt to find the curve which has the same geometrical relation for 
the slope as the above hypergeometrical polygon, we see that it will change its type 
according to the sign of B22 - 4,31,833. 

After sonme reductions we have 

V/ti22 4,PiPl3} 

n +2 12 V ( + ')bj> )/ ( ')1b)(n/b)( b)n/J 

M~occcxcv.-A. 3 A 
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Hence /{,82 - 4,31,3} will be real or imaginary, according as r/n lies outside or 

between the limits 

+? ( t 

If 'r/n lies outside these limits, then the integral of the right-hand side of 

equation (e) is purely logarithmic; if it lies between these limits, the integral is in 

part trigonometrical. 

Since r must be less than n, it follows that the integral must be trigonometrical if 

these limits are respectively =< 0 and = > 1, i.e., if 

(p + 1/n) (q + /n) or> >, 

or P must lie between ? / V{ (I + 

For example, if n 100, then, if p lies between '6005 and 3995, the integral must 

be trigonometrical. If p lies outside these limits, say = 7 for example, then the 

integral will be logarithmic if r/n does not lie between 04 and *96, i.e., if we draw 

a small or large proportion of the total contents. 

Let us treat the trigonometrical and logarithmic cases separately. 

(12.) Case I. 8l22 < 4,1,3. 
The curve having the same geometrical slope relation is 

log y -constant - log (/31 + /32X + :33X2) 
233 

32_ 2 tan 2l?3?-T + 82 
2/3' \/{14,8133 /l2} \{/4113 -2 

Write x for x + P2/283, changing the origin; further put a for ,/ {4/3,3,3 - (2805 

mt for 1/(2,83), and v for - _ , then we have, yo being a constant of 

integration, 

_ q__ - e -v tan ' (<a) 
8 (1 + ?2/a2)"'l 

This frequency curve is asymmetrical and has an unlimited range on either side of 

the origin. It corresponds accordingly to the curve required as Type IV. 

Here 

a - I cV{4 (I + pn) (I + qn)-(In-2r)2}, 

-n(n - 2)(p - ) 

V /{4 (1 + pm) (p + pn6) - (it - 2q)2} 

fH 2 (i?/+ ?2). 
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Special cases. (i.) Suppose r/n = X, and n very large, then 

rn/a &n (pq - - xY) n~' z 

Thus we have 
y = y0e-x2a 

which reduces to the normal type by a change of origin. It is important to notice, 
however, that the standard deviation of this normal type 

= /2ax1) - c/ V {n (pq - - X) xi 

and is very different from the value cV/(r + I) q} - =cV (n pq X 4X)> nearly, which 
is the usual form. Only when we put p q = . and make X small do they agree. 
We thus conclude: That the normal forns may fit a chance distribution, but it does 
notfollow that the standard deviat on ts of the b 'nomial type generally assumed. 

(ii.) Suppose X at, corresponding to the withdrawal of one-half of the contents of 
a vessel, then 

y =yo (I + xla;,')- 
where 

ao V 7{(I + pn) (I + qn)}. 

This is an unlimited and symmetrical frequency curve approaching more and more 
nearly to the normal form as we increase n. It has, however, a standard deviation 
- lcV(npq), while the normal curve would give h-c/(npq X 2). 

(iii.) Suppose p = q = Ad we again reach the form 

Y =Yol +ti2 
where 

ao=-lc (n + 2) I\/{ -. + ( 2) 

Make n infinite and we have again the normal type, but a standard deviation of 
the form /cV{nx (I - X)}) only approaching-the usual value when X is small. 

We postpone until we have discussed the remaining types the problem of fitting a 
curve of Type IV. to a series of observations. 

(13.) Case II. 82- > 4,81,83. 
Let a and a2 be the roots of 81 + 3 + Bx2-0 Then the curve having the 

same geometrical relation for its slope is 

d(log y) x 
x - 3 f x-a,1)(x-a2) 

/3 (a1 ~- a ) {o Sat log (x Ca1) - a log (xa-ax 
dxA 
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or, if 
1/ = a/3 (a - a) 

Y y'o (x - a) "(' (x - a )v(12 

- Y (1 x/a1)vcT(1 -/a) 
a 

" 
by changing constants. 

Assuming that yo; v, av and a2 can take any sign whatever, wve see that there are 
three fundamental subtypes of this frequency curve, 

(iv) Y Yo ( X/a1,)" (1 - x/a,)va2 
Y 

a,, 

< An- - - 0 ?E 

This is an asymmetrical curve with limited range and maximum towards mediocrity. 
As a rule val and va2 are fractional and the curve becomes imaginary beyond the 

limitsx -a, and -ab.. 

(ii.) y yo (x/la-- 1)-1 (I - x/a2)?c"2. 

Here the ordinate between x a1 and x (t. varies from infinity to zero, and 
resembles the frequency- curves given by "c wealth" distribution or infant mortality. 

(iii.) y yo (1 - x/1)-val (I + x/lac) (2, 

i- awi -m0;er-g a e c -e i 

This is an asymmetrical curve waith limited range, mediocrity being in a minimuml. 
The disappearance of mediocrity is not a very ulncommon. f-eature of statistics; the 
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"prevalence of extremes " may appear not only in meteorological phenomena but in 
competitive examinations, where the mediocre have occasionally sufficient wisdom to 
refrain from entering. The tvpe is that of Mr. F. GALTON'S curve of " consuMptivity."* 

The curve contains an interesting number of less fundamental subtypes. 

(iv.) Make a2 = o in (i.), 

? y(1 + x/a6yc1 Cvxe 

This is the limit to the asymmetrical binomial, which has been already referred to 
in ? 8. 

(v.) Make al =2, 
y Y ( x2/al2)val. 

-p'-a, - X 

This is the symmetrical frequency curve of limited range. 
(vi.) Make v negative in (v.), 

Y ~ (t _-2l-a 2)val 

My 

This is a symmetrical frequency curve, with limited range, and minimum of 
mediocrity. 

(vii.) Put v = pal in (v.) and make a1 = 

y -O e 
This is the normal curve. 

* ' Natural Inheritance,' 1889, p. 174, 
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(viii.) Put a, 2 s in (ii.), 

y ?/Y( (x/a-1)- e-le 

_ ~~00_ 

This is an asymmetrical frequency curve, with an ordinate varying from a, to 0o 
along an infinite range. 

All eight of the above types are included in the single form 

Y yo (1 + 4-/)vcal (1 - )vcP2 
or 

y = y1xr (1- 9 

if we give positive, negative, or limiting values to the constants. But to do this we 
require to give values to n and r in the expressions for IBI 3, and 3, which are not 
easily intelligible, if we rigidly adhere to our example of drawing a definite quantity 
of sand from a limited mixture of two kinds of sand. The last type of curve given 
is, however, the frequency curve for a priori probabilities,* and readily admits of a 
direct interpretation of the following kind. 

Given a line of length 1, and suppose -+ 'f points placed on it at random; what is 
the frequency with which the point pr from one end and qra from the other of the 

series of r + 1 points falls on the element 8x of the line.? 
The answer is clearly 

IprEl: / \ IJ 

or, we have a frequency curve of the type 

y = yoPe (. -x/l)r. 

We may express the problem a little differently. Take r + I1 cards and slip them 
at random between the pages of a book, the frequency of the page succeeding the 

pr + Ith card is given by the above curve.t 

* See CROFTON, " Probability," ? 17, ' Encycl. Brit.' 
t The important point to be noticed here is that we are dealing with a distribution in which 

contributory causes are inter-dependent, 
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Until we' know very much more definitely than we do at present, how the size of 
an organ in any individual, say, depends on the sizes of the same organ in its 
ancestors, or what are the nature of the causes which lead to the determination of 
prices, or of income, or of mortality at a given age, I do not see that we have any 
right to select as our sole frequency curve the normal type 

y - y_ C-pS2 

in preference to the far more general 

Y yo (I + x)al (1. - l 

which not only includes the former, but supplies the element of skewness which is 
undoubtedly present in many statistical frequency distributions. As we may look 
upon the former as a limit to a coin-tossing series, so the latter represents a limit to 
teetotum-spinning and card-drawing experiments. It is not easy to realise why 
nature or economics should, from the standpoint of chance, be more akin to tossing 
than to teetotum-spinning or card-dealing. At any rate, from purely utilitarian and 
prudent motives, we are justified so long as the analysis is manageable, in using the 
more general form. It will always give us a measure of the divergence of particular 
statistics from the normal type, and in many cases of skew frequency, it can be used 
when it would be the height of absurdity to apply the normal curve at all. 

Since Types I., II., III., and V. are all represented by the curve 

Y Yo (I + X/ay)vaj (1 - x/6a)vt2) 

and Type IV. by the curve 
____ _ _ _ _ v tan 1x/a6 

Y-Yol+ x2/a2)ne 

we have only to deal with these two cases in general. We shall refer, in the 
course of our work, to special simplifications arising in particular sub-cases. After a 
description of the manner in which these generalised probability curves may be fitted 
to statistics, we shall indicate, by examples, their practical applications. 

(14.) On the Generalised Probability Curve. Type 1. 

y = yo (1 + X/al)val (1 -_a/a2)vaj. 

Let the range a, + a. = b; let ml = val, ma =vary, z (a1 + x)/(a1 + a2), 

whence x =-al, z = O and z = 2, z=1. 
Further let 

Yq yo (a,1 + a2) a 1 ,,,,+ ~l/atla22 

Yo ( I + iM2) ? ll + 'l MIM2 112 

thuls y? = z72fl1 (1 _Z)1iz2. 
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Let a be the area of the curve between x - a, and x -= a., its rth mont 

round a l)arallel to the axis of y through x ay and oc its nt' moment round the 
centroid vertical. 

Then we have 
1) 

=XI yx'"dx, 

=b" + n z1111 + A(1 _ zY 2 clz, 
0 

= s 

lPq B (ml ? i + 1) +m2 ? 1)n 

r (l + rAJ n + 2) 

Thus, by the fundamental property of the, P function, we have 

ex b IF (rnl + 1) r (m2 + i) / r (nt, + nn + 2), 

b 

(inl 

+ 1) bl 

(iet1 

+ 2) 

(inl 

+ 1) 
t+ qn2 + 2 P 22 + mn21 + 3) (i, + rn2 + 2)' 

(+b3(n + 3)(in1 
+ 2) (it1 + 1) 

(+ + 4) (ml + qit2 + 3) (vn1 + m2n2 + 2) 

1? = ^; + ; b4 (tl + 4) (in, + 3) (rnt,, + 2) (rnt+ + 2) 
r4 (Intl + m42 + 5)(m, + m,2 + 4) (9n, + }t2 + 3) (}t~l + 9)1' t+ 2) 

From these we easily deduce by the formule connecting .t and a', if we write for 

brevity, m, + 1 m'rn 'M2 + 1 -mn'2, and mr' + in' =r: 

b n 2 '1 rn'2 2b3 in'1 ' - th'1) _ 3b4 fit' M'2 (0at'l )'62 (r - 6) + 2'i2) 
2-qs2 (/ + ) 3 /1 + (+) (+ 2) ' r(r+l)(r+ 2) (r + 3) 

Now, a, x2 j3 and 4 are to be found by the methods indicated in Art. 4 from the 
polygon of observations, and may be supposed known quantities, when we are dealing 
with the fitting of frequency-curve to observations. 

Then, if /82 =Ph'4/V22, and = U32/k23', E = r'1 i2, we have: 

4 (2 - 4e) (r + 1) 3 (r + 1) (r2 + (r - 6)) 

- 1- e (r +r 2)2, 2 ,(r, + 2) (r+ 3) 

Thus 
)3, (r + 2)" 1 /9 ( + 2) (9'r + 3a) __2r, 

4 (r + 1) -3 (9i + 1) 

whence, eliminating r2/E, we find: 

3-2/3 +6 
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This gives r, then: 

4 + 
jj3 

(r + 2)2/(r + 1) 

bV - 2 r3 (r,+ 1) = 8 K2a,(r + 2)2' + 1 6qa+ 1)9 
4 

or 

b:= 8/2{1 (r + 2)2 + 16 (r + 1)I' 
2 

Since 
r _ m'1 + M'2 E = r'1 '2 

rn'1 and rn'2 are roots of 
mr2 - r +E= 0. 

Thus inm = Wr'1 -1 and 2 = r'2 -1 are deterrmined. 
Further, a, + a2 = b, aj/a2 = mnjm2, and v = rl/a1 are all determined. 
LastlyY 

Ao = , %`A11}4m/On + In,) g1 +2a 

and 
bv P 

r(VIn + 1) r (in2 + 1)/P (finl + % + 2), 

give: 
giv l ~l2eM22 P (in1 + ?n2 + 2) 

Yo b (in1 + 9%2)ml+m2 r (Jh ? 1) r (ni2 + 1) 

which completes the solution)*, if a Table of r functions is to hand. 
Rernarks. It is clear that the solution is unique. 
It is necessary in order that the solution may be real, that m', and rn'2 slhould be 

real or r2> 4E. Hence, if c be negative, there is certainly a solution, becuse r is 
always real. The solution forms, however, one of the subb-types referred to in our 
Art. 13, (ii) and (iii). 

If E be positive, we must have r2/c - 4 positive, or 

_3(3 4-2)_ -> 0. 
(6 + 3,31 - 2/2) (4182 - a 

Now it is easy to prove that for any curve 4,82- 3,8, or 44- 3V32 is positive, 

fo1r (14(k2 is always greater than Vs23 
Thus, we must have 

6 + 3/31 2/32 > 0) 

or 
21t2 (3/2,2 - P) + 3pJ32 > 0. 

* Very often with sufficient accuracy we may take: 

Y0 =a (in1- + in2 ? 1) /(r1 + M2) f 71 - - 
ma 

MDOCCXCY.-A. 3 u3 
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Now it is theoretically impossible to fit a normal curve (s3ju22) to a frequency 
distribution for which Iu, > 3p,?. It is, however, possible to fit this generalised curve 
of Type I., although ph4 be >3/x2, provided there is sufficient skewness to render 

3 j3 
2 > 21ih2 (jl 

- 
31k.2). 

Hence the first stage in deternmining the type of curve suitable for a given set of 
observations is to ascertain the value of 

21k2 (3Ik? -2 V4) + 3,U320 

If this exv pression be positive, wve see that a limited r anye of variation is a possibility. 
Passing from range to skewness we remark that the distance cl between the centroid 

vertical and the maximum ordinate 

- a1 -K~' a1-1 brn'1/(in'1 + rn'2), 
A/ I 

- -. b" ar, - )1) 

(Olnl + in2) (nir1 + qnf2 + 2) 

Now it might seem that d/b would form a good measure of skewness, and it would 

be so if all curves had a limited range. But, as they have not, it seems to me 

better to take as the measure of skewness the ratio of the distance between the 

naximum ordinate and the centroid to the length of the swing radius of the curve 

about the centroid vertical, i.e., the quantity d/I/2. 
In our case we have accordingly, 

92:t -1t 2/wt +ac i3X 
skewness J / in 

GThl m :2 V Jt + i) (q2 + 1)1 

in our previous notation. 
Thus range and skewness are determined in Type IL 
(15.) A very considerable simplification of the above analysis arises when the range 

is given bv the conditions of the problem itself, e.g., guessing between two given tints. 
In this we only require the rmomnents Ih'-L and t' about one end of the range, and the 
solution becomes as easy as in the case of fitting a normal curve. 

Since b , 1 and '2 are known, let 

Y= I'/b and Y2 pi2/(pilb). 

* The points of inflexion of the curve are at distances V'ala2/(+ n + m0 2 1) on either side of the 
ma irnuin ordinate. 
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Then 

Yi r n'/(m'1 + M'2), 72 -- act 1 + r ? 

and we have at once 

m,' = 71 (72-1) , = )(721(1-fx1) 

72 72 

Then ajAl,2 = (n' -l )/(m'2-1), and al + a2 b give a, and a2. Finally yo is 
given as before by 

a rnflM21lbm2 P (ml + Nd2 + 2) 
Yo = 7j- (rn~ ?- --~n~n Pr~ ) n+1 

Y? b (fi?', + M2)"+MP,(ml + lrm+ 1 

(16.) A perhaps still more interesting and usual case arises when one end of the 
range is given, i.e., when pu'l, but not b, is known. For example, a curve of distri- 
bution of disease with age, the liability to the disease starting with birth. Here we 
require to calculate from the observations aC ', V2 and V'3. The solution is as 
follows: 

Let 

1h 2/K1ii = X2) 1k3/(V2V1) = X3 
then 

(enm' + 1) (ml, + rim2) 1 + v 
X(2 -rm'1 (Ml, + ?im2 + 1) - + 1 t 

(M1 + 2) (im'1 +_rn'2) _1 1- 2v 

X ImI (rim' + W' + 2) 1 + 2u 

if v = 1/m'1 and u = 1/(m', + rn'2). 
Solving 

+X3 -2X , 
2X3_______X 

U= 2 (X32X) V= 2(X 2 X3) 
Thus, 

rn' =_2X2XX rn' -2 __2 (%2-%3) (%2-_X_2 - X% 

2X3 -S 
X2% 

2-1 
X3-- 

2 % 
22) (2%3 -2 

X2%-x,)3) 

b =(1 (rn'1 + '2)/m'1 P= V/U 

' 2X3_- -X'X3 

determines the range. 
Hence, since 

a, ? 2 = b, and a,/a, 
- - ----- 

we have with the aid of the previous expression for yoe the complete solution of the 
problem. 

3 B 2 
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(17.) Generalised probability curve of Type I-. Limited Range and Symmetry. 

Y Yo (1 - x2l/a2)m 

The solution in this case follows very easily from (14) by putting ,8 0, we have at 
once 

2(m + 1)=r 6 (= -1) 

or 
5182 - 9 __ 51-L4 - 

m 2 (3 -8) 2 (3122 /-) 

Since y-2 (9 + 1)' and clearly E 

we have b= 2a_ 2Vt (r + I)} 
or 

a- -(3 - /?2I24) 

Finally v 
CC 9f22U) r (2m, + 2) 

Yo Ot)b (2mn)2'l {F (im+ -)> 

a (3 --82) P (2w?, + 2) 
2 v/(2,2l2) 2Im {P (m + 1) 

,\/,U82 -.,14 _ 
(2mt + 2)_ 

_a 0 ~~2ttgz4h 21,,+'- Jr (g + 1)} 

_ / -/t4 F (m + 15) 
- / 'V 2tt 4Vwr (n + 1) 

For the normal frequency curve IA4 = 3/it2l, for a symmetrical point-polygon 3 2 > 
Hence, whenever a symmetrical frequency curve diflers from the normal curve on the 
side of the point-binomial, we can better the normal solution by taking a symmetrical 
frequency curve of limited range. 

Since 

qJ=y (o a 66 

and 
?n 

0/2 

92 

a2 4jt/3t 
2 

if , -- 3, we easily trace the transition from the lirnited symnmetrical curve to the 
normal curve with infinite range. 

Quite apart from the extremely interesting problem of finding the range, it is clear 
that better fits will be obtained for symmetrical distributions by the aid of this limited 
range curve fo~r all cases in which 3ju2 > pu4. 
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(18.) Generalised Probability Curve of the Type III. Range limited itn one 
direction only. 

y = yo (1 + x/a)ye-vx. 

In this case we have no need to determine the value of cut, and the analysis is much 
simplified by the replacement of the B function by a single r function. 

Take z = y (a + x) and write ya = p, we have 

PI1) 

Further, x =a, z -OX c. z -c.0. Thus we find 

o(x + a)" dx- z Y P dz .Za 

Hence 
yoaep F~cd(p +n + ) 

O=pP+l (a 1), at - 
715 (P + 

whence 
K 29?1, V2 = (p + 1) (p + 2) 

(p + 1) (p + 2) (p+ 3) - (p+ l) (p + 2) (p ? 3) (p + 4) 
P, 4 4 

Or, transposing to the centroid-vertical, we have 

p + 2 (p + 1) (p + 1) (p + 3) 
'- y2 ' k- J'4 4 

The first two results give us at once 

y 22/tk3, p =4k23 - 1, 
whence 

a - ' - 2D2 _ 2 and Y 
= ,iT (p ? 1) 

7 /k3 24P 

This completes the solution of the problem, which is seen to require only the 
determination of 2 and 3. 

Remarks.-The distance d of the centroid-vertical from the axis of y or maximum 
ordinate d, is given by 

d - ~~a - j312 

Thus 
Skewness dll/VH2-23y3 
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If we transfer the origin to the centroid-vertical we have 

XI \4txA3 2 - 

Y =Y + 2 e _21243 

where 
a 1/{2'n (p + 1)} e1,S'l (p + 1)' 

F( +1) 

It is interesting to note how this skew curv e passes into the normal curve when 

/13 is made vanishingly small, or p - 

By WALLIS'S theorem the limit to Yi = 

It remains to find the limit of 

+ 
X tA +u~I~i~ 

~~~~~~~~~~V(I + 2/ n)6Mzy 1.+) eA lO1M 

- =[t(1+~~~+ tb) e }1 f ?"-2 

Now the limit of X(I + u) e -}"/' for u 0 is easily found to be e , hence 

the normal form. 
Returning to the value we have found for ju, and eliminating p and y between 4,, 

U3, and juge we find 
2 2 (3i2 -k /44) + 3N3 = 0. 

This is the expression (see p. 398) which must be positive in the case of limited 
range. It is zero also for the normal curve, because both 3p22 - ju4 and j3 vanish. 
Hence the more nearly the quantity 2t2 (312 - 41) + 3p32 approaches to zero, the 
more nearly are we able to fit our statistics with a skew frequency-curve having 
a range limited in one direction only. 

(18 bis).-The skew frequency-curve of Type HI. deserves especial notice. It is 
intermediate between those of Type I. and Type IV., and they differ very little from 
it in appearance. Hence, if the reader has once studied the various forms which 
Type III. can take as we alter its constants, he will grasp at once the forms taken by 
Types I. and IV., by simply considering the range doubly limited or doubly unlimited. 
To assist the process of realising Type II-I., Plate 9, fig. 5, has been constructed; it 
contains seven sub-types of this species, varying from fig. I., in which the curve is 
asymptotic to the maximum frequenevTordinate to fig. vII, which is practically 
identical with the normal curve. Taking y yo (1 + x/a>) e - Yxl for the equation 
to the curve, wte have the following values for the constants pi and A'j 
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I. Am '67 .3 
I1. p 001 '7 '2505 

Iltp P 265 '7= '363 
IV. p= 1 021 ' = 7676 
V. p= 1 yz '5 

VI. p- 6'5625 y 4'3125 
VII. p 1890 - 1700 

In the diagrams vertical and horizontal scales (yo and a) have been chosen so as 
to illustrate best the changes of shape in the curve. The general correspondence of 
this series with actual types of frequency curve, as indicated in Plate 7, fig. 1, will at 
once strike the reader. 

The mean, the median, and the mode or maximum -ordinate are marked by bb, cc, anid 
aa, respectively, and as soon as the curves were drawn, a remarkable relation manifested 
itself between the position of these three quantities: the median so long as p was 
positive, was seen to be about one-third from the mean towards the maximum. 
For p negative and between 0 and - 1, this relation was not true. The distance 
between the nmaximumi-ordinate and the mean is, if the equation to the curve be 

y = yoxveY-x, 

equal to I/y. Now the maximum cannot be accurately determined from observation, 
but a fair approximation can be. made to the median. Hence the constant y could, if 
the above graphical relation were shown to be always true, be determined approxi- 
mately as the inverse of thrice the distance between median and mean. 

Now distance of mean from origin (p9 + 1)/y 
and ,, maximum ,, = p / y. 

Hence, supposing distance of median (p + c)/y, we should expect to find 
c = 2/3 about. 

Equating the integral which gives the area up to the median to half the total 
area, we have 

YO xPe-'dx d- YO Jxvx dx, 

or, 

zPe-0 dz = 2 Jzpe--z dz. 

This is the equation for c. Unable to solve it generally I gave p a series of integer 
values and found in all cases c nearly '67. Its value, however, decreased as-.p 
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increased. I, therefore, assumed c to be really of the form c cl + c2/p, and deter- 
mining cl and c2 by the method of least squares, found 

c = 66691 + 0094/p. 

Probably this is only the beginning of a rapidly converging series in inverse powers 
of p, but it would appear to suffice for most practical purposes. It is only true for 
p > 1 and does not explain why, when p is positive and fractional, c is still apparently 
near 3 ; thus its value for p = 0 has only risen to '6931. We have then the following 
fairly simple mieans of determining roughly the constants of a skew curve of this type: 

(l.) Find the mean andl the mediant; these gives y, approximately. 
(2.) Find 2 for the mean; this gives p, since 2 = (P + i)/Y2. 

(3.) Knowing p, correct the value of y by using the above value for c, and so obtain 
a corrected P. 

(4.) Determine yo from the area. 
This method is not very laborious and may be of service in some cases." It will, 

of course, fail for any curves in which p is negative, and must only be applied when 
the curve is known to be of Type III. If the beginning of the range is definitely 
known, we may save stage (2) above and find pj from the distance of the mean from 
the start of the range. 

(19.) Generalised Probability Curve of Type IV. Range unlimited, butform skew. 

_ 

. 

C, -v tan-' (<ala) 

{1 + (W/a)}2I 

Put x a tan 0, hence 
- y = y :o5s2am 0 e -Vo, 

oit's- ,,2 Gt = dx yo' + I Cos 2" " 20 sin80 ev0 dO, 
~~~r/2~~~~7/ 

= yoatw +1 cosr 910 sinl 0 e-vO AdO if r = 2 - 2) 

A-Yoc +1i {(-z2 Cos + 20 sin" - 20 e- vdO f/ i CS- A +sin_'0 evda } 

+ ~ ~~~>a 7T/{(n{)al z_2 -v/2Zl}o 

provided r > n 1. 

* The points of inflexion may also occasionally be found from the observations; they are at distances 
i A/pLa on either side of the maximum ordinate. 



MR. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 377 

Thus, if we know a and 'j, we can find the successive I"s. Now 

7r/2 

cX~ Yo~ -cos -OevdO, 

-YoAI iv7r sin"O e + vO dO, 
0 

and depends on the integral J sin"O e ? vWOd, which I propose to write G (r, v). The 

result above for tA', shows us that the more general integral J cosPO sinO e + vO dO can 

always be expressed in terms of G- -functions. Further: 

r/l2 

Clou- yial ,r/2 cosr O 10 sin 0 ev0 dO, 

- - (a) ( icosrO ev? 10 - a. 
-r12 ?' 

Thus we find by the formula of reduction above: 

V ~r-: (r+ v2) Vh3 _ (3r - 2 + 3 

? 4' r<(r-1) (r-2) (X _3) { 3r (i 2) + v (6r -8) + i/j. 

Referring to centroid vertical, we have: 

a2 4a3v(r2- + V2) 

_ 3a4 (r2 + v2) { (r + 6) (r2 + PI) - 8r} 

-h4 qr -1) (r -2) (-3) 

These may be rewritten, if z - r2 + v2, 

a2z 4azv'z- .) 
V2 r(r )' r3(r-1)(r-2) 

3a4z {(r + 6) z-8r2} 
rl (r - 1) (r - 2) (q - 3) 

As before, putting -B =3/L23 and 2=Q we have 

_81 (r--82) r_8 
2 (r -1) 

/,8(q 2)(r3)- p 
3 (r-2I) (1 = r + 6- 8- 

MlDCCCXCV. -A. 3 C 
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Adding and dividing out by 7 - 2, we have 

6 _(32 - A- 1) 
r 8- - 381- 6 

he-ace 
m - L (r + 2) 

is known. Further 

1 ,_ (r - 2) 
16 - 

is known, whence 
1' = '/Sr2) 

is given. Finally 

and 
aelavr 

Yo ~W 

ea sin" 0 CvO dO0 

completely determine the problem. 
Remarks. The solution is clearly uunique. 
(i.) To determine the skewness we, must find the position of the ordinate for which 

dy/dx = 0; this is x0 - va/(2m) - val(r+ 2). 

But 
a z Wtt v 2va 

t -- 
r? + 2 r (r + 2) 

Hence 

skewness =d//u2 

= 2 V/(2~--- ) ---P1 r-2 (ct: p. 370). 

(ii.) We further notice that 
423 - f r - 1 2 / 

Hence, since 4,82 is always > 3P3 (see p. 369), it follows, since r > L, that we must 
have 

2j1- 32 1 - 6 6> 0, 

or 

2Ft2- (3Ft~t _b 4) + 3F32 < 0 

@ Whether we give i' the -or +L sign will de~pend upon the sign of usin the actual statistics. 
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Thus this expression is again critical for the class of curve with which we are 
dealing. We may say that a skew frequency curve will have limited range, range 
limited in one direction only, or unlimited range according as 

2 (3k2 - 
t4) + 3132 

is greater than, equal to or less than zero. Thus the calculation of this expression is 
the first step towards the classification of a frequency curve given by observation. 

(iii.) It is noteworthy that the values we have obtained for r, z, -a, v and yo will be 
real and possible if r > 1. On the other hand we have required in our work that r 

should be > 3. I propose now to return to this point. So long as r > 1 the values 
of both. ul' and Sk, will be finite, but the values of '3 and '4 and consequently of yL 

and ut4 will be infinite if r be < 3. That is to say, the third and fourth moments 
of the curve about the centroid vertical become infinite. This is quite conceivable 
from the geometrical standpoint, and various interesting questions, of purely 
theoretical value however, arise according as r > I and < 2, i.e., 4 and t3 are both 
infinite, or r > 2 and < 3, i.e., p, alone is infinite. The solution we have given fails 
in these cases. We should obtain, however, finite relations between the four constants 
of the equation to the curve by taking the first and second moments ak", and oC'2 

round the axis of x; we find in this case 

7r/2 

oq1= -a cos2r+20 elvG dO, 

I'= Y3 a cos3r+40Ce 3V0 d0 -U 
7r/2 

or, 

i = y0 e-l>vr G (2r - 2, 2v)/G(, 4 

k2 = 3yO2 eY v G (3r 4. 4. 3v)/G (ri v). 

These results together with 

a2 (r2 ? 7A) 
P' r1.2 (r 1) M=yae-v G (r, v), 

are theoretically sufficient to determine the four constants r, v, yo and a. Practically 
they would hardly be of service without very elaborate tables of the G functions. 

As a matter of fact, we are very unlikely in dealing with actual statistics to meet 
with cases in which p3 and p4 become infinite, because neither the range of observa- 
tions, nor the size of the groups observed at great distances from the origin can be 
infinite. With finite values of u3 and 4, it is, however, easy to see that we always 
obtain from our solution on page 377 a value of r > 3, so that the solution is self- 
consistent. 

3 ac2 
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(iv.) It remains to say a few words about, the integral 

G (r, ) fsinro CvO dO. 

Provided r > 1, we find a formula of reduction 

G (r, V) =~ ~ )G (r - 2,) 

Thus the value of the integral from r =0 to r =2 only will 'be required for diverse 
values of v. The integral does not yet appear to have been studied at length or 
tabulated. Dr. A.- R. FOIRSYTH",* has kindly answered my inquiry for a fairly easy 
method of reducing G (r,) v-) for purposes of calculation, by sending me the formula 

G (r I 2' 7rell" U (r-,) 
- vii) 11 14 94 + L7 

,where Hi is GAuss's function such that 

Hl (n) =F (n + 1). 

Taking as definition of H1 that 

when n is infinite, we can reduce the, above expression to the form 

G (r, v) = 2-v ,,relvv fr (r + 1) 
Product (1+ v 

Here, since r can always be, supposed to lie between 0 and 2, when v- is small a few 
terms of the product will generally suffice for the calculation of G ('r, v) to the degree 
of accuracy required 'in statistical practice. 

On the other hand when r- is large, i.e., generally in cases of slight skewness, I find 
if tan vli 

2I 2P -2i 2~ ? ) Cos k2 cos 
very -nearly. 

Hence 
C-OS2_ - - r tan 
e 3r 1-2- 

YO 2 V~ (Cos 0Y14~ 
ver nearly 

* "4 Evaluation of two Definite Integrals," ' Quarterly Journal of Mathematics,' January, 1895. 



MR. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 381 

(20.) We have now considered methods for fully investigating whether a given 
system of measurements has a limited range, and for ascertaining the degree of 
skewness of the system. 

Analytically, our work may be expressed as follows:- 
The slope of the normal curve is given by a relation of the form 

1 dy _ c 

The slope of the curve correlated to the skew binomial as the normal curve to the 
sym metrical binomial is given bv a relation of the form 

1 dy - 

y dX e + C2x 

Finally, the slope of the curve correlated to the hypergeornetrical series (which 
expresses a probability distribution in which the "contributory causes " are not 
independent, and not equally likely to give equal deviations in excess and defect) as 
the above curves to their respective binomials is given by a relation of the form 

y dx Cl + c2x + c3'2 

This latter curve comprises the other two as special cases, and so far as my 
investigations have yet gone practically covers all homogeneous statistics that 1 have 
had to deal with. Something still more general may be conceivable, but I have 
hitherto found no necessity for it. 

To demonstrate its fitness and the importance of these generalised frequency 
distributions for various problems in physics, economics and biology, I have devoted 
the remainder of this paper to the consideration of special cases of actual statistics. 

PART II.-STATISTICAL EXAMPLES. 

(21.) QUETELET, who often foreshadowed statistical advances without perceiving 
the method by which they might be scientifically dealt with, has treated of the subject 
of limits in Lettre XXII of his " Lettres sur la Theorie des Probabilites " (1846). He 
seems to have been conscious that certain variations in excess or defect might 
biologically or physically be impossible, and he accordingly introduces the terms Limites 
extraordinaires en plus et en moins to mark the range of possible variation. He 
makes no attempt to show how this range may be found from a given set of statistics 

CC Lorsqu'on suppose le nomnbre des observations inlfini, on pent porter les 6carts N des 
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distances egalement infinies de la moyenne, et trouver toujours des probabilites qui y 
correspondent. Cette conception mathematique ne peut e6videmment s'accorder avec 
co qui est dans la nature. . . Les limites extraordinaires au delt desquelles se 
trouvent les monistruosttes, me semblent plus difficiles a fixer." 

Indeed QUETELET'S attempt to fix these limits in the case of the height of human 

beings at 2 801 and *433 metres is purely empirical, and scientifically worthless. 
I propose in this the first section of the practical part of this paper to consider how 

far the theory we have developed in the first part, enables us to find the range in 
various groups of physical and biological phenomena. 

Examiple I. The Range of the Barometer. -The following results for the curve of 

barometric heights are given oni p. 352. 

oa= 171'6 Ad 10414 

H-o = 1595 4, = 326 34. 

We have accordingly: 

2V2 (3v22 _ v/4) + 3V32 = 400581 

that is, this expression is positive, and we have a limited range, 
We have further: 81 = -24401, fl2= 3417391. 
Hence, determining the constants in the manner described in ?14, we have: 

rs = 30:1382 e 15017954 

b = 43 61016, 

= 3355 a1=2 8 2688 

= 22 8030 a) = 35'341-4. 

Next to find dc giving the distances of the centroil from the origin, or the distance 

on barometer between mean and, maximum, we have by p. 370 

d=-- 8983. 

Thus 
Range of barometer above mean 9'1671 

below ,9 34 4431. 

Now, in the scale upon which our curve is drawn in Plate 10, fig. 6, each centimetre 

equals -1-f inch, and the mean barometer in Dr. YENN'S results equals about 29",931. 

Thus the maximum possible = 30" 85 and the minimum possible = 26" 49; the range 
of the barometer being about 4"`36. Now, the highest barometer in Dr. VENN's record 

_30" 7, and the lowest 28" 7;i it is clear, therefore, that we reach mnuch nearer in 
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practice to the upper than to the lower limit of the barometric range.* The result 
here obtained for the barometric range is of course only tentative and approximate. 
Far larger statistics must be dealt with, and for a greater variety of places, we shall 
then be better able to judge how far the range, as ascertained from Dr. VENN'S 

statistics, is local, or if general, what modification or correction may be required. 
Calculating the value of yo, we find for the curve of barometric heights: 

y 21P642 (1 + x/8'2688)53352 (1 - x/35'3414)228030. 

This curve is traced on Plate 10, fig. 6. It will be seen to be extremely close to the 
observations. 

Although the expression 2k2 (3[k2 - i4) + 3,S32 is not zero, it is interesting to see 
with what closeness the skew curve which is the limit to a point binomial can be 
fitted to the barometric observations. This is the curve of Type HII. Calculating 
its constants by aid of ? 18, we find 

y - 22 (1 + x/12 1063)'5393 e-'27(1 

while d, the di-stance between the maximum ordinate and the centroidwvertical, 
- 7864. This gives a maximum possible height of the barometer of 31"'22 instead 

of 30" 85, there being of course no lower limit. The curve is shown in Plate 10, 
fig. 6, and will be seen to give a very close correspondence with the observations. 
The "skewness" of barometric results as given by the curve with limited range 
= 8983/3'184 '2821, and as given by the curve of Type III. = 7864/3'184 

'2470,-no very great difference. 
The areal deviations of the two curves are almost exactly the same, being about 

7-1 sq. centims. or percentage error of 4 1. The normal curve is also drawn on 
the same plate. It diverges widely from the observations, the areal deviation 
= 26 sq. centims. or the percentage error 15 1, -about 3.7 times as great as in the 
case of either skew probability curve. 

Till a wider range of barometric observations have been analysed, it may be wiser 
not to draw too definite conclusions from the above results, contenting ourselves with 
the remark that the new skew curve gives far better results than the old normal 
curve of errors. 

* I am unaware if Dr. VENN'S results are reduced to sea-level. The lowest recorded barometric 
height for the British Isles reduced -to sea-level is 27"333 (at Ochertyre, Perthshire, January 26, 1884) 
and the highest (at Roche's Point, Cork, February 20,1882) is 30"93. A statement that the barometer 
stood at 31`046 at Gordon Castle, in January. 1820, has hardly sufficient evidence. Supposing Dr. VENN'S 
statistics to be unreduced Cambridge statistics, the expression theoretically found for the barometric 
range seems to be on the whole satisfactory. I have at present in hand other series of barometric 
heights. 
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Exgnaple II. Professor WELDON'S Crab J3easturements No. 4. The details of 
these are given in 'Phil. Trans.,' vol. 185, p. 96. 

We have 
o.= 999, jt2-=7*6759, 13 = 3A4751, 

(J4 184 3039, l= -0267022, p = 3 12807. 
In this case 

212 (3yU? _4) + 332 = /23 (6 + 318 - 2) -23 X '1760334, 

and is accordingly negative. In Ex(tamqpe .[. of the barometric heights we had 

'2 ( 3/2 4) + 3I'3' - 2 X S38421. 

Since, in the latter case, this value was sufficiently small to give a good curve of 
Type III., we may expect the like result in this case. There is, indeed, a slight but 
sensible skewness even in this the most symmetrical of all Professor WELDON'S crab 
measurements,, and the skew curve of Type III is really a better fit than the 
normal curve. But clearly since the critical function is negative, we are dealing 
properly with a case of a curve of Type IV. The ratio of the organs dealt with in 
No. 4 series of measurements does not give a " limited range " of variation. Pro- 
ceeding by the method indicated in g 19, we find for the constants 

r= 71'624, m= 36 812, 2=25 7616, 
a 21'909 - 7-8802 

4= '21407, Skewness= -077267, Yo= 1.75509.* 

Thus the equation to the curve is: 
- 257616 tan' (7/21909) 

y 117 5 5 09 [1 + a4/(21 909)2]36 812 

To trace the curve, take: 
x 21'909 tan 0, 
y = 1'*S75509 cos73'624 0 e25-76160 

If we take a skew curve of Type III., we find for its equation: 

y = 144 22 (1 + x/33 683)48 e 

where, for the centroid 
d = 226364, 

and the skewness 
- 081704. 

For the norinal curve we have: 
y = 143'85 ex2/(2 754)2 

4 Yo was calculated by aid of the approximtate formula on p. )380. 
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All three curves are drawn in fig. 4 of Plate 8. It will be seen that they are all 
very close to the observations. So far as skewness is concerned, curves of Types IlI. and 
IV. give practically the same result (-082 and 077); in both cases the skewness is 
small. The areal deviations are in the three cases respectively: 4.4 sq. centims., 
5.9 sq. centims., and 6 7 sq. centims., or we have mean percentage errors in frequency 
of 4.4, 5.9, and 617 nearly; the percentage error for the closest point binomial is 10'5. 
We thus conclude that even in a case which has been selected as the most typically 
symmetrical series of measurements out of a very considerable set of careful statistics, 
the generalised probability curve is one-third as good again as the normal curve, 
while the special case of that generalised probability curve-which is not the most 
appropriate to our observations-is itself distinctly better than the normal curve. 
This result has been confirmed by a considerable application of these generalised 
curves; in good cases of normal curve fitting, the generalised curves are always 
sensibly better; in cases where the normal curve is almost useless, as in the case of 
barometric observations, the new curve, if of the appropriate type, wvill represent with 
a 4 to 5 per cent. mean accuracy many observations not yet reduced to statistical 
theory. It is, perhaps, unnecessary to repeat that this mean percentage is much less 
than the average of what has been allowed to pass muster hitherto in both physical 
and biological measurements. Professor EDGEWORTH'S view* thus seenms untenable; a 
curve with a comparatively easy theory of its constants has been found which excels 
the accuracy of the hitherto adopted normal curve. And this for the simple reason 
-that it would pass into the normal curve, if that curve were itself the best fit. 

23. Example 111.-The following statistics -of height for 25,878 recruits in the 
United States Army, are given by J. H. BAXTER, ' Medical Statistics of the 
Provost-Marshal-General's Bureau,' vol. 1, Plate 80, 1 875. 

78-77 2 64-63 1947 
77-76 6 63-62 1237 
76-75 9 62-61 526 
75-74 42 61-60 50 
74-73 118 60--59 15 
73-72 343 59-58 10 
72-71 680 58-57 6 
71-70 1485 57-56 7 
70--69 2075 56-55 3 
69-68 3133 55-54 1 
68-67 3631 54-53 2 
67-66 4054 53-52 1 
66-65 3475 52-51 1 
65-64 3019 

* ' Phil. Mag.,' vol. 24, p. 334, 1887. 
MDCCCXCV.-A. 3 D 
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I find: 
Mean height - 67"2989. 
Standard deviation = 2"'5848. 
Maximum ordinate, 3994*04. 

This gives a very close-fitting normal curve. 
The data for a generalised curve are 

V2 6'68122 1- 005769 
I - = 131168 A:3'02480]. 
= 135'02324 

Thus, 
2,8., - 331- 6 '032295, 

and being positive, we see the curve belongs to Type IV. There is, thus' exactly as in 
the previous examples of crab measurements, no range of a limited character for these 
statistics of height.* For a true normal curve, 8,, 182 ought to be 0 and 3 respec- 
tively; we have therefore a still closer approach (3 025) than in the case of the crabs 
(31 28) to norrnality. In this case r is about 400, and on any reasonable scale, there 
is no sensible difference between the normal and the generalised curves. The skew- 
ness is very slight, = *038 about, or about half its value in the case of the crabs. 

24. Example 1 V.-Height of 2192 St. Louis School Girls, ageud 8.-The following 
statistics are given by W. T. PORTER, " The Growth of St. Louis Children," 'Trans. 
of Acad. of Sci. of St. Louis,' vol. 6, p. 279, [1894. 

Heights at intervals of Number. Heights at intervals of Number. 
2 centins. 2 centims. I 

centims. en nims. 
141 and 142 1 119 and 120 342 
139 ,h 140 0 117 , 118 321 

1 137 ,h 138 1 115 ,9 116 297 
135 136 5 113 ,, 114 222 
133 A 134 10 111 79 112 137 
131 7 132 21 109 ,, 110 I 84 
129 ,, 130 28 107 7 108 - 42 
127 ,d 128 79 105 ,, 106 27 
125 A) 126 138 103 ,, 104 8 1 
123 ,, 124 183 I 101 ,, 102 2 
121 122 243 99 e 100 I 

The following are the calculated values of the constantst 

* If, notwithstanding, we take a curve of Type II., we find the range limited on the 'dwarf' side 
at about -7645". 

t The unit of all these constants = 2 centims., except in the case of the mean height. The 
standard deviation = 5'55244 centims., which gives a probable deviation of 3 745 centims. Thle mean 
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7170739, Mean height = I118'271 centims., 

UL3 2 38064, Standard deviation 2177622, 
-p- 192:17419, Yo foru.ormal curve -314 99, 

A- *0123784, 3235045. 

Thus 2P2 - 3,8 - 6 is positive, and the curve is again of Type IV. 

We have 

cd = *135606, Skewness - 04885, 
= 30 8023, m [64011, 

v= 4 56967, = 14 9917, 

yo 235 323, 

or, for the equation to the curve 

- 14 9917 tan 0, 

y - 235 323 cos3280230 e-4'569670 

the axis of x being positive towards dwarfs and the origin 2 2241 on the positive side 
of the centroid-vertical. 

The maximum ordinate = 324418 and occurs at x - 2 0884. 
The curve of Type IV., together with the normal curve, is drawn (Plate 10, fig. 7). 
If we attempt to fit a curve of Type III., we find p about 322414, and the range 

limited on the dwarf side at about 99 812 centims. from the mean, or at a height of 
about 18 5 centims. The largeness of p causes this curve to coincide with the normal 
curve to the scale of our diagram. The areal deviations are for the curve of Type IV. 
and for the normal curve 64l and 8.3 centims., giving percentage mean errors of 5'56 
and 7-66 in the ordinates respectively. The advantage is again on the side of the 
generalised curve. It wNill be seen at once that the normal curve by no means well 
represents the number of girls of giant height. The theoretical probability that 
these giants should occur is small, and their actual redundancy over the numbers 
indicated by the normal curve suggests some peculiarity in this direction; it is fully 
met by the curve of Type IV. The asymmetry of the curves given by anthropo- 
metrical measurements on children has been noted both by BOWDITCH11 and PORTER,,t 
but in their published papers, to which I have had access, they do not give their 
raw material, only the ogive. curve arising from GALTON's method of percentiles. 
-Unfortunately, theoretical evaluation of' the skewness of anthropometric statistics 
can only be applied or verified when we have raw material, and not integral frequency 

height and probable deviation, as given by Mr. PORTER, are 118 36 and 3698. The latter is obtained 
from the mean deviation, but I do not know how the former is to be accounted for. 

>* 'Growth of Children, studied by GALTON'S Method of Percentiles.' Boston, 1891, p. 496. 
t 'Growth of St. Louis Children.' St. Louis, I894, p. 299. 

3 D 2 
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curves, the integral of the frequency in all suggested forms of the frequency curve 
being not expressible in terms of undetermined constants. Valuable as is the 
method of percentiles for representing popularly the numerical facts of anthro- 
pometry, it is to be regretted that percentile statistics are replacing the raw material 
in so many publications. The raw material of Professor WELDON'S crab-measure- 
ments and BOWDITCH and PORTER'S child-measurements ought to be preserved and. 

circulated in print, as a means of developing and testing statistical theory. 
(25.) Exanple V. Length-Breadth IJdex of 900 Bctvcariarn Skulls.-The following 

statistics are taken from Tables T.-VI., VITL-X., inclusive, of J. RANKE'S 'Beitrage 
zur physischen Antihropologie der Baiern, MiInchen, 1883.' They include all the 
material, which may 'be treated as typically "Alt-Baierisch," both male and female 
skulls. 

Index. Frequency. Index. Frequency. Index. Frequency. 

70 1 80 71S 90 10 
71 1 81 82 91 8 
72 0 82 116 92 3 
73 2.5* 83 98 93 15 
74 1.5 84 1 107 h 94 2 
75 3'5 85 82 95 1.5 
76 12'S 86 74 96 0 
77 17 87 5S 97 0 
78 37 88 34 5 98 1 
79 5.5, 89 19 99 0 

We find, as before, 
Position of centroid-vertical, 83'071 1 1, 

0r _ 3*468, Yo = 103'532 (for normal curve), 

= 12'027166, la] '0078995, 
U3 3'707 179, = = 3'649553, 

,u4 527 '91696, r = 12'42734, 
d = '111388, Skewness '0321186, 

m 7'21367, V = 853,771, a = 1'69583 yo= 107'4706. 

Thus we see that the curve is again of Type IV. This result seems of considerable 
significance, but it requires, of course, wider examination of cases than I have yet 
been able to make. But, so far as I have gone, in both anthropometric and 
biological statistics, whether relative or absolute measurements of organs, the 
frequency curves all deviate from the normal curve-however slight the deviation- 
in the direction of Type IV. That is to say, the distribution of chances upon which 
the frequency of variation of an organ. depends, appears to resemble the drawing of a 

* Indices such as 73 5 have been divride~d between 73 and 74 groups 
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limited amount from a limited mixture. So far as this goes, it is evidence against 
the usual hypothesis that in biological matters the chances of deviations on either 
side of the mean are equal, and the " contributory causes " independent and 
indefinitely great in number. Thus we appear in biological statistics to be dealing 
with a chance system corresponding, not to a binomial, but to a hypergeometrical 
series, such as that discussed in ? 11. 

If it be remarked that Type IV. dismisses at once the problem, of range from 
biological investigations, we must notice that, while this is theoretically correct so 
long as we are dealing with the continuous curve by which we replace the hyper- 
geometrical series, it is not true the moment we fall back from the curve on the point 
series (see p. 361). If the r of that page (or the qn) be an integer, the series is limited 
in range. It seems very possible that discreteness, rather than continuity, is charac- 
teristic of the ultimate elements of variation; in other words, if we replaced the curve 
by a discrete series of points, we should find a limited range. It is the analytical 
transition from this series to a closely fitting curve which replaces the limited by an 
unlimited range. Exactly the same transition occurs when we pass from the sym- 
metrical point binomial to the normal curve. Thus, while Type I. marks all absolutely 
limited range, the occurrence of Type IV. does not necessarily mean that the range 
is actually unlimited." 

For the equation to the curve we have 

x = lP*69583 tan 0, 
y = 107 4706 cos14A2734Oe-'8537710 

the origin being at a distance 803515 on the positive side of the centroid vertical. 
The normal curve as well as the curve of Type IV. are shown (Plate I 1, fig. 8). The 

result in both cases is quite good for this type of statistics-i.e., the skulls came from 
eight different districts and include 100 female skulls. With the planimeter the areal 
deviation in both cases- 68 square centims., giving in either case an average per- 
centage error of 7-56. That the generalised curve does not in this case give a 
decidedly better result than the normal curve I attribute to the heterogeneity of the 
material. It clearly accounts better for the extreme dolichocephalic and brachy- 
cephalic skulls than the normal curve. The same 900 skulls have been fitted with a 
normal curve by STIEDA,t but neither the constants of his normal distribution nor 

* I reserve for the present the fitting of hypergeometrical point series to statistical results. The 

discussion is related to curves of Type IV., as the fitting of point binomials to carves of Type III. It 

will, I think, throw considerable light on the nature of chance in the field of biological variation, 

especially with regard to limitation of the material to be drawn upon, to which I referred above, and 

which, I believe, finds confirmation in skull statistics. 

t "Ueber die Anwendung der Wabrscheinlichkeitsrechnung in der anthropologischen Statistik," 

' Archiv fur Anthropologie,' Bd. 14. Braunschweig, 1882. 
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his p]otting of RANKE'S observations agree with mine. He has added together under 
83, for example, all indices fromn 83 to 83'9. Thus, for the indices 81, 82, 83, 84 he 
gives the frequencies 106, 92, 111, 99, while I find 82, 116, 98, 107, a very sensible 
difference.: STIEDA'S method can introduce very sensible errois. In this particular 
case it transfers the maximum- frequency of observation from 82 to 84. 

The last four examples have dealt with cases where the statistician I as hitherto 
been content to assume symmetry. They have been given to indicate (i.) an 

apparently uniform trend in biological statistics of variation, and (ii.) the improved 
fitting of theory to practice which arises from using the generalised curve. I now 
pass to cases of obvious skewness, where the statistician has hitherto had no satis- 
factory theory. 

(26.) Example Vi. Distribution of 8689 Ccases of Fnteric Feqver Received into the 
Metropolitan Asylums Board Fever Hospitals, 1871-93. 

Age. Number of cases. Age. Number of cases. 

Under 5 266 35-40 299 
5-10 1143 40-45 163 

10-15 2019 45-50 98 
15-20 I 195.) 50-55 40 
20-25 1319 55-60 14 
25-30 857 Above 60 13 
30-35 503 

I considered that the 13 cases "above 60" might be distributed as follows: 60-65, 
8; 65-70, 4; 70-75, 1. 

Traking five years as the unit I found 

4'070554, y =7'598196, 69'379605. 

The centroid-vertical is at 18 9691 years, ' '29382J unit from 115-20. 
Thus 2u2 (3IL22-)? 3+ 32= 13'05102, or the curve is of Type I. Since, however, 

33- - 2/32 + 6 = 1935 is small, a curve of Type III. will also be a good fit. 

We have for the other constants 

r1 = 72'28642, c- '98643, 
e 259'78912, Skewness 488922, 
b) 77 28312, 

m1 2179291, -i3n 67 49351, 

a1 3'07801, a2 4 274 2051', 

Ye 1890'83. 

* I class as 83 all from. 82'6 to 83'4, dividing 82 5 between 82 and 83 evenly, and 83 5 between 83 

and 84 evenly. Thus in the Table above certain frequencies will be found with such values as 125 or 
71'S skulls. 
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Thus we have for the curve of Type I. 

X 219291. ~x 6~74931511 
_ 
1890'8:3 (1+ 3.07801) K1 74&20511 

where the centroid is *98643 unit from axis of y. 
The curve of Type lII. is 

x \3673042 
1894*57 1 + 348094 07143 

The centroid is in this case *933313 unit on the positive side of the origin and the 
skewness 4 '62594. 

It will be noticed that the curve of Type I. extends '2706 unit or 1.353 years, 
and the curve of Type UT1. *5676 unit or 2'838 years before birth. In both cases 
the chances of an " antenatal " death from enteric fever are very, very small. Curve 
of Type I. is in this respect better than the curve of Type 111. The latter curve 
gives no maximum limit, the former a limit of about 77 units or 385 years. In both 
cases, however, the chances of a case of enteric fever with the subject over -100 years 
are vanishingly small. These statistics of enteric fever thus set a maximum limit to 
the duration of life, but it is a limit so high as to have little suggestiveness. 

In order to see what is the nature of the difference made, when we suppose the 
liability to enteric fever to commence with birth, I will treat these statistics as a 
case falling under ? 16. 

If then k'j, px'2, and I'd be the first three moments about the vertical through 
0 years we have 

/h'I 3179382, K2= 18'46362, 
= 108'53175, 

X2 1'282813, X3- 1549399, 
u - 030435, v 321856, 

MnI1 2'14296, 28 71414, 
b 40'1206, Yyo 1873-39, 
a1 - 2178629, a 37'33431. 

whence we have for the curve 

+X 2.78629 (14296 i X 28-71414 

y = 1873 39 01 + I -82l A 

Here the duration of life is 200 years about, and the maximum incidence of the 
disease is at 13'93 years. 

Lastly for the normal curve, we have the constants a- = 2 01756 units = 10'0878 
years and y. = 1718'12. 

All the above four curves are drtalwn. Plate 12, fig.v 9. 
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We see at once that the normal curve is perfectly incapable of expressing statistical 
results like these. It gives an average error in the ordinate of 25 8 per cent. and no 
less than 260 antenatal deaths ! 

For the remaining three curves we have the following results: 

Percentage error Antenatal cases 
in ordinate. 

Curve of Type I. (closest fit) . . 5.75 3 
(starting at birth) . 73 0 

Curve of Type III ...... . 5.98 9 

The percentage errors here are well within those usually passed by statisticians. 
If they are slightly larger than what we have found in previous cases the source of 
the error is not far to seek. We have combined both male and female cases, but the 
distributions of enteric fever for both sexes are not the same. The fever curves for 
either sex differ in some cases markedly, although less for enteric fever than for 
diphtheria, for example. We have thus, in reality, a cornpound curve. I have found 
for about 700 male cases only a percentage error of about 5.* 

Another point needing notice is the question of antenatal cases, which may at first 
strike the reader as absurd. The closest fitting curve of Type I. runs, as we have seen, 
1 35 years about before birth, and gives three antenatal cases. Three antenatal cases 
(or, indeed, 9 in the case of the curve of Type III.) is a very small percentage of 
8689 cases, and not of importance from the statistician's standpoint. But the fact 
that a curve starting before birth gives a better fit than one starting at birth, is 
significant, and there is every probability that a curve starting from about -75 year 
would give a still less percentage error than one from 1.35 year or from birth.t 

In dealing with mortality curves for infancy I have found it impossible to get good 
fitting theoretical curves, without carrying these curves backward to a limit of 
something less than a year. The " theoretical" statistics thus obtained of antenatal 
deaths seem to be fairly well in accordance with the actual statistics of maternity 
charities. In vital statistics therefore we must be prepared in most diseases for small 
percentages of antenatal cases and antenatal deaths, and it is just possible that theory 
in this matter will be able to indicate lines of profitable inquiry to the medical 
statistician. 

(27.) Example VII.-As an example of the method of Section 15, I take the 
following statistics of guessing a tint. Nine mixtures of black and white were taken, 

* I propose on another occasion to deal with the age distribution of fever cases. My object at present 

is only to give typical illustrations of the method of calculating skew curves. 
+ In fact the case of a pregnant woman with enteric fever is to be considered as a case also of 

antenatal enteric fever. 
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so as to get a series of tints in arithmetical progression 1, 2, 3, 4, 5, 6, 7, 8, and 9. 
These tints were then placed in non-consecutive or(ler, and 231 persons asked to guess 
a tint by affixed letters lving between I and 9. The results were as follows:- 

11ilt. Frequency of Tint Frequency of guess. guess. 

1 0 6 54 
2 1 8 1 - -7 9440 
3 7 8 40 
4 6 .9 0 

Now, obviously, the number of tints and the number of persons guessing were far 
too limited to draw any definite conclusions as to the distribution of tint guesses.* 
I propose here merely to use these statistics to' illustrate the calculation of a skew 
frequency curve with a given limited range. I do not wish to propound any theory 
of tint guessing, nor to assert that these guesses actually distribute themselves 
according to the curves dealt with in this paper. 

Calculating the moments about the centroid in the usual manner, we have 

I-2 2'1417 
= =- 3 700)67 UCentroid lies at a distance of 5'376624 units 

= 196255 { from the tint 1. 

We easily find 2ju, (3M2- P4) + 3iu32 = 1 5963 35, or the observations fall into a 
curve of Type I., that is to say, have a limited rangqe. 

We obtain 
1'39407, /32 = 4'27862, 
6 = 6'95847, e= 6A443186. 

hence the ranges 
b= 11'31768. 

Further 
Tit = 4'858705, m2 '099765, 

1= 1108997, a = 22769, 
d = 1-561012, Skewness = 1'06666. 

Thus the range of the theoretical curve runs from a point 4'15233 units before 
tint 1, and concludes at a point '734674 unit before tint 9. The curve is, however, 

* I hope later to deal with the subject of tint guesses falling within a limited range, as my material 
increases in bulk. I would only note here, that the geometrical mean frequency curve does not seem to 
give results acfording well with experimnent. 

MDCCCXCY. --A. L 
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practically 'insensible before tint 1. Considering the roughness of the experimental 
method, the obtaining an actual range of about :1 instead of 8, and its covering very 
nearly the range of 8 must be held to be fairly encouraging for the method. I shall 
accordingly cfalculate the constants of the curve on the assumption that the range lies 
between Tints I and 9, using the method of ? 15. 

We find 
= 2623376, '2 9'023803, 

Yi 327922, Y2 '42997l. 
Whence 

h= 2,75412, mf = 83l72, 
a= 6'144435, a1 =1855565, 

and 

yo 59 5996. 

Thus we may take for the curve 

6(1 + 6 144435) ( 1 855565) 

The curve is figured, Plate 1 1, fig. 10, with the first " smooth" of the observations. 
It will be seen to give the general character of the distribution,but mnuch more elaborate 
experiments would be required before any statement could be made as to whether 
frequency of tint guesses really does follow a curve with limited range of Type I. 
On the same plate the frequency of 128 guesses distributed over 18 tints is given, 
the approximation to a curve of Type I. is fairly close considering the paucity of 
guesses. 

(28.) Example T11I.-The question may be raised, how are we to discriminate be- 
tween a true curve of skew type and a compound curve, supposing we have no reason 
to suspect our statistics d pritori of mixture. I have at present been unable to find any 
general condition among the moments, which would be impossible for a skew curve 
and possible for a compound, and so indicate compoundedness. I do not, however, 
despair of one being found. It is a fact, possibly of some significance, that the best 
fitting skew curve to several compound curves that I have tested is a curve of 
Type I., and not that of Type IV. which appears to be the more usual type in 
biological statistics. TaKing, as an example, the statistics for the "foreheads " of Naples 
crabs due to Professor WELDON, and resolved into their components in my memoir, 
'Phil. Trans.' A, vole 185, p. 85, et seq., I find for the best fitting skew curve the 
equation 

X \1177264 / 4.046(D 

y = 83 2526 (1 + 40 9296) (- b 2125)? 

where the origin is at 14274 horizontal units fror. the centroid-vertical in thie 
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positive sense of the horizontal scale. If, now, we place this skew curve and the 
compound curve of Plate 1, 'Phil. Trans.,' vol. 185, on top of the observations (see 
Plate 13, fig. 11), we see at once how much better is the fit of the compound curve. 
The skew curve gives a mean percentage error in the ordinates of 10 4, the compound 
curve of only 7"4. The determination of the best skew curve, when the compound 
curve is known, is easy, for all its details are already practically calculated. 

A criterion of whether a compound or skew curve is to be sought for ab itnitio, 
would be, however, of great value. 

(29.) Examrle IX.--A more markedly skew curve than any we have yet dealt 
with is that giving the frequency of divorce with duration of marriage. I take my 
statistics from a paper by Dr. W. F. WILLCOX, entitled "The Divorce Problem, 
a Study in Statistics" ('Studies in History, Economics, and Public Law,' Columbia 
College, vol. 1, p. 25). They are as follows:- 

Duration of marriage r Duration of marriage D n y . Divorces (1882-6). i y I Divorces (1882-6). in years in years.. 

1 5314 12 4089 
2 7483 13 3 356(3 
3 9426 14 3144 
4 9671 15 29131 

l5 9014 16 27201 
6 8274 17 2217 
7 7021 18 1877 
S 6093 19 1577 
9 5305 20 14,5J 9 

10 5002 21 and over 9401 
11 4384 

Total number of divorces granted, 109,966. 

Now these statistics stffer from. a defect common to many of the class-the want 
of careful enumeration of the frequencies near the beginning and end of the series. 
It cannot be too often insisted upon that careful details of the frequencies in the 
start and finish of the distribution are requisite if' we are to fit skew distributions 
with their appropriate skew curves. How, in this case for example, are we to 
distribute the 9401 divorces which occur after 21 years of married life? How, on 
the other hand, does the curve start ? It is impossible to place 5314 divorces at the 
miean-6 months-of the one year duration. It is obvious that the applications for 
divorce will be far more numerous in the last half-year than the first half-year of 
matrimony. The very time required to institute legal proceedings and get a divorce 
granted must ensure this if nothing else did. Yet these two tails of 5314 and 9401, 
of which the accurate distributions are not given, Care between -1 and - of the total 
number of divorces, and until we know how they are exactly distributed, we cannot 
hope for the very exact fitting of a theoretical curve. 

3 E2 
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In order to make the best of the " tails " under the circurmstances, their moments 
were calculated on two hypotheses, (i.) that they were triangles, (ii.) that they were 
logarithmic curves, and the mean of these extreme results taken. 

I found 

2= 6017376, 3 = 809415, 

y =L750127, p =36891. 

Distance of centroid from start of curve = 9'1183, 
maximum =, ,, 24373, 

yo = maximum frequency = 8882'45. 

Here the curve is assumed, owing to the obviously long tail to the right and the 
abrupt start to the left, to be of Type ItII Its equation is accordingly 

y = 8882 45 (1 + 247) e -150127X, Skewness = 8547. 

The curve is figured, Plate Ii, fig. 12, and will be seen to rise abruptly at about 47 
of a year's duration. It may be doubted whether legal proceedings even in America 
are so rapid that a divorce suit can be complete within six months of marriage. The 
curve, gives fairlv well the general form of the frequency statistics. Could the 
moments have been determined with greater accuracy, most probably a better fit 
would have resulted. As it is the mean percentage error is above 6. 

(30.) Faxnple X.-A still more extreme case may be selected from the field of 
economics. I take the following numbers from the 1887 Presidential Address of 
Mr. GosCHEN to the Royal Statistical Society ('Journal,' vol. 50, Appendix II. 
pp. 610-2). I have grouped tofrether both houses and shops, because the details of 
the two are not in Mr. GOSCHEN's returns separated for values under ?20. 

VALUATION of House Property, England and Wales, years 1885 to 1886. 

Number of houses. Number of houses. 

Under t10 3,174,806 ?S0 to ?100 47,326 
?10 to ?20 1,450,781 100 ,, 150 58,871 

20,, 30 441,595 150 300 37,988 
30,, 40 259,756 300,, ^500 8,781 
40, 50 350,968 500,, 1,000 3,002 
50 ,, 60 90)432 1,O00, 1,500 1036 
60 so 80 104)128 

Here clearly til curve starts with the mTTximum frequency, and futher to any 
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scale to which the curve can be drawn, it tails away indefinitely to the right. This 
justifies us in the assumption that the curve will be fairly approximated to by a form 
of type 

Y = Yo XP 

where p would turn out to be a negative quantity lying between 0 and 1. But the 
details given us of the start and finish of the curve are far too scanty to allow us to 
proceed by moments. In the first place, to measure an element of area of the 
frequency curve by an element of value into its mid-ordinate is perfectly legitimate 

A B 

at such a point as B; it fails entirely, however, at such a point as A, which includes 
the part of the curve which is asymptotic to the ordinate of maximum frequency. 
The area at such a point is much greater than the element into the mid-ordinate, 
and the calculation of moments on the assumption that 3,174,806 houses may be 
concentrated at ?5, is purely idle. The ordinate obtained from the area in this 
manner may often diSer 30 per cent. from the true ordinate, and yet about three- 
fifths of the total number of houses fall into this first group. 

Further treating the area as ordinate into element of value is also true only if the 
element of value be small. For " elements " such as ?150, ?200, or even ?500, which 
are all that are given in the tail of these statistics, it is perfectly idle to concentrate 
the area at the mid-ordinate. The centroid of a piece of tail such as the accompanying 
figure suggests lies far to the left of the mid-ordinate In other words, to attack the 

problem by the method of moments, we require to have the " tail" as carefully 
recorded as the body of statistics. Unfortunately the practical collectors of statistics 
often neglect this first need of theoretical investigation, and proceed by a method of 
" lumping together " at the extremes of their statistical series. 

Still three further points in regard to the present series of statistics. First-, they are 
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very unlikely to be homogeneous. Houses with an annual valuation of over ?300 
hardly fall under the same series of causes as the bulk of houses in the kingdom 
which fall under ?1 00. Secondly, when we are told that 3,174,806 houses are valued 
under ?I0, it can hardly mean that any houses are valued at 0, certainly not the 
maximum number. THence our frequency curve in theory must not be expected to 
rise from zero, but from some point between 0 and ?10, which corresponds to the 
customary minimum at which a cottage can be rented. 

Lastly, there is one special cause at work tending to upset, about the value of ?20, 
the general distribution due to a great variety of small causes. This is the value at 
which taxation commences, and we should expect a larger proportion of houses to be 
built just under the taxable value than is given by a chance distribution. 

Notwithstanding the many disadvantages of these results, I determined to obtain 
if possible a skew curve approximating to the main portion of the distribution. I took 
?10 as my unit of value and 1000 houses as my unit of frequency. I started with 
the ordinary method of moments, concentrating each area at its centroid as given by 
the total valuation of the group, also recorded by Mr. GoSCHEN, and found a curve of 
the type 

y = Y e 

with 
p '65448, y '2003. 

This was so far satisfactory that it showed even by this rough method that p was 
negative, and between 0 and 1. Thus the theoretical curve gave an infinite ordinate, 
but finite area at its start. 

A laborious method of trial and error was then adopted, and by varying p and y 
slightly, as wuell as yo and the origin of the curve, I sought to improve the fit given 
by the rough method (in this case) of moments. The fundamental consideration was 
to keep the total areas under ?100 value as nearly as possible the same in the 
theoretical curve and the statistics. This portion of the curve I treated as prac- 
tically referring to homogeneous material. Ultimately I found the following curve: 

y = 1388'32 xam690077 e-3057N56, 

with the origin as '45 unit from zero. Thus the minimum annual valuation was 
?4 T~s., or, to a weekly valuation, of is. 7 1d. This would connote probably a weekly 

l4 1s., to 2 

rental of Is. 8d. to 2s. The total area of this theoretical curve was 5795 in thousands 
of houses; of these 5729 had a valuation under ? 100 and 66 over ?100; the corres- 
ponding numbers for the statistics themselves are 5720 and 110. The additional 44 
over ?100 I assume to be due to the heterogeneity of the statistics-high values 
corresponding to blocks of chambers, large hotels and other buildings hardly falling 
into the same category as the small house under ?100 in value. Unfortunately the 

tail " of the statistics is so defectively recorded that there is no hope of reaching a 
separate di~stribultionl for this high class property. 
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Returning now to the curve and statistics, we have the following comparative 
results 

Number of 1000's of houses. 
Value. 

Theory. S tatistics. 

.Under 1035017 4625 }4626 10-20 14 45 
20-30 452 442 
30-40 253 260 
40-50 153 151 
50-60 97 90 
60-80 102 104 
80-100 46 47 

Above 100 66 110 

The general accordance here is very marked, the chief divergences being accounted 
for by the special causes to which we have referred above, i.e. (i) the crowding of 
houses just below the limit of taxation, and (ii) the divergent character of the causes 
at work determining the frequency of low and high class house property. 

The results are depicted, Plate 14, fig. 13. 
It will be observed that so far as the observations can be plotted to the theoretical 

curve, it leaves little to be desired. The histograinm shows, however, the amount of 
deviation at the extremes of the curve. 

(31.) Exarmple XI.-Frequency curves of the type considered in Example X. are 
so common that it is needful to make a few further remarks with regard to them, 
and illustrate them by further examples. Such curves occur in many economical 
instances (income tax, house valuation, probate duty), in vital statistics (infantile 
mortality), and not uncommonly in botanical statistics of the frequency of variations 
in the petals or other characteristics of flowers. 

As we have noted, the method of moments developed in this memoir cannot be 
directly applied, or only applied to obtain a first approximation to the constants 
required. This first approximation however, will often assist us to obtain with 
quite sufficient accuracy the value of the moments of portions of the area, especially 
if the position of the initial or asymptotic ordinate is known. 

For example, consider the curve of limited range 

Y = Yo X P (b - X) 

where p lies between 0 and 1. Then if a be its area, aqji"' = the sth moment about 
the asymptotic ordinate of the area up to x: 

* Introduced by the writer in his lectures on statistics as a term for a common form of graphical 
representation, iwe., hy columns marking as areas the frequency corresponding to the raunge of their base. 
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c fpt yo x-rP(b - x)ndx 
0~ ~ ~ ~ 

1Ob{ + s_ b(2 + s -P) 271.2 (3 + -s) b) } 

Hence, if the range b be large and x be small, this series converges very rapidly, 
and we may often take with sufficient approximation even only its first term. Thus 

'I __ _ P 

P, I=~~ 
n nearly. 

3- 4 -_2 

Oil 

Now is given by the statistics, and we note that if p has been determined to a 
first approximation by the method of mnoments, we can now improve the values of the 
moments of the areas near the asymptotic ordinate by the use of the above 
expressions. 

For example, if p .5 as a first approximation, we have 

K 1 X = 3 F 2 = X2, K 3 7X. 

Concentration along the mid-ordinate in the usual manner would have-given us 

K 1 - 2 K= ,~ 1 3 83 

and as the area up to a short distance fiom the asymptotic ordinate is generally a 
considerable proportion of the total urea, the above values very considerably modify 
the calculated moments. 

In the case of the curve 
y = y eT 

we have the result 

Ats =YOX l +} 2+38--p+ I.2.(3+s-p)} 

Hence, as before, if y and x be small, 



MR. K. PEARSON ON THE MATHEMATICAL THEORY OF' EVOLUTfON. 401 

- 1 - ) approximately.* 

Results such as the above enable us to approximate fairly rapidly to the constants 
of a frequency curve. 

As a, special example, I take the following. In 1887, Herr H: DE VRIES transferred 
several plants of Ranunculus bulbosus to his flower garden, and counted the petals 
of 222 of their flowers in the following year. He found ('Berichte der deutschen 
botanischen Gesellschaft,' Jahrg. 12, pp. 203-4, 1.894) 

Petals . . . 5 6 7 8 91 10 

Frequency . . 133 55 23 7 2 2 

Now the series here proceeds by discrete units, and corresponds probably to a hyper- 
geometrical series, but remembering hoow closely the results of tossing ten coins can 
be represented by a normal frequency curve, I was riot without hope that the areas of 
a skew frequency curve would give results close to these numbers. The buttercups 
start with 5 petals and run to 10, I therefore took my origin at 4-5 and determined 
the constants to a second approximation in the manner above indicated. There 
resulted, 

y-2:211225x- 322 (7 3253 .- 4) 142 

a curve of Type ., with limited range, the asymptotic ordinate being at 4 5 petals, 
or practically a distribution ranging from 5 to 11 petals. 

Calculating the areas, there results, 

Petals. 5 6 7 8 9 to0 11 
f Theory. . . 1369 48 5 22 6 9.6 3 4 .8 h2 

t Observation . 133 55 23 7 2 2 0 

The agreement here is very satisfactory considering the comparative paucity of the 
observations.1 The results are exhibited by curve and histogram, Plate 15, fig. 14; the 
two points on the "observation curve" corresponding to five and six petals are 
deduced front the areas given by the statistics by the same percentage reduction as 

* Another very serviceable formula is due to SCIILiiM1LCO. It gives the area of the " tail>" of 
y =y0x Pe -Yx from x = x to x = o in a rapidly converging series, i.e., 

area = yoxPe" { 1 + p_ p (2'?) 4-&e . 
at r fzX +1 (yx + 1) (yx + 2) (yi.x + 1) (Qy + 2) (gx + 3) 

t 2048 tosses of 10 shillings at a time gave a mean 3 per cent. deviation between theory and 
experiment, 100 tosses gave about 9 per cent. The above series} corresponds to about 7 2 per cent., and 
thus is quite within the range of accuracy of coin-tossing experimentls. 

]\IDCC(x(CV. ---A. 3 F 
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converts the theoretical areas into the ordinates of the theoretical curve. For other 
petals, ordinates and areas practically coincide in value. 

(32.) Example XIL-ANnother example of a similar kind may be taken from 
Herr DE VRIES' menmoir (loc. cit., p. 202). He cultivated under the name of perum- 
bellaturn a race of Trifolitnm repens, in which the axis is very frequently prolonged 
beyond the head of the flower, and bears one to ten blossoms. In the summer of 
1892 he had a bed of such clover, produce of a single plant, and in July counted the 
extent of this variation on 630 flowers. In 325 cases the axis, according to DE VRIES, 
had not grown through the head of the flower, in 83 cases it had grown through and 
bore one blossom, in 66 cases two blossoms, and so on. The complete statistics are 
as follows 

High blossoms 0 1 2 3 4 5 6 7 8 9 10 
Frequency . 325 83 66 51 36 36 18 7 6 1 1 

Taking moments in the manner of the earlier part of this memoir, I found as a first 
approximation to the frequency curve: 

y- 452842 x-'442817 (10 691A14 _ -)1525944 

with the origin at *478 13 to left of maximum ordinate. This first approximation 
seemed to justify three things: (i.) starting at 5 to the left of the maximum ordinate; 
(ii.) assuming a range, 11 which just covered the whole series of observations, i.e., 
from '5 to 10 5; and (iii.) that the moments of the areas might be found from a value 
of p not far from '5. 

A second approximation was then made, and taking moments round the asymptotic 
ordinate, I found: 

1t l 8680, t _ 7'77028, 

whence, in the manner of ?16, we have: 

XI '1698182, X2 = '3781526, 
and ultimately: 

Ml - '493118, rmn = 1'47797, 

and 
Yo = 4'65148. 

The equation to the frequency curve is therefore: 

Y = 4'65148 X-493118(t1 - x)147797. 

The value found for p, i,.e, .493, justifies our calculation of the moments on the 
assumnption that it was 5S. 
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Placing statistics and theory side by side, we have: 

High1 
blosos 0 1 2 3 4 5 6 7 8 9 10 

blossoms 

Statistics 325 83 66 51 36 36 18 7 6 1 1 

Theory 303'22 106,12 69 99 49'27 35,23 24,93 17 07 10 96 6,27 2179 *52 

The agreement between theory and observation is here all that could be desired, 
except in the case of 0 and 1 high blossoms. Here 22 blossoms have iii actual 
counting been transferred from the theoretical group of 1 to the theoretical group of 
zero high blossom. I consider it highly probable that the theory here gives better 
results than the actual statistics; and this, for the simple reason that it must be 
very difficult to distinguish between any one of the low blossoms and a very slightly 
extended axis bearing only one blossom, that is to say, the extension of the axis 
passes insensibly into one of the low blossoms, or vice versa, and in a certain proportion 
of cases it must be difficult to distinguish between the categories 0 and 1. The com- 
parison between theory and observation is represented by curve and histogram, 
Plate 15, fig. 15. 

Examples X. to XII. will suffice to illustrate the application of our theory to 
extreme cases of skew distribution. 

(33.) Example XJII.-It must not be supposed that in every case of variation by 
units (as in the buttercup and clover examples), the curve will be found to be of 
Types I. or I1l. It is impossible to illustrate, in anything short of a treatise 
on statistics, the infinite variety of statistical distributions, but the occurrence of 
Type IV. in zoological, as distinguished from botanical measurements, is so persistent 
that it seems well to illustrate this for the special case of discontinuous variation. 
Professor WELDON has kindly given me the following statistics of dorsal teeth on the 
rostrum of 915 d and T specimens of Palcemonetes varians from Saltram Park, 
Plymouth. 

Teeth. Cases. 

1 2 
2 18 
3 123 
4 372 
5 349 
6 S0 
7 1 

The centroid-vertical here lies *313661 of a tooth beyond 4, i.e., at 4,313661 teeth. 
The following are the moments about centroid-vertical: 

3 r2 
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b 910906 1 
'233908 where the unit I tooth. 

Ad = 2'625896 

For the normal curve these give 

Standard deviation '9544, 
Maxi'mumn ordinat e 382'S. 

For the skew curve we have 

'072222, /3 = 34164684. 
Iffence 

2 -31-6= '122702, 

or, we have a curve of Type IV. The values of 81 and 2, however, show that it will 
niot differ very widely from the normal type. 

Proceeding to determine the other constants we find 

rm 111' 398, 
--109'047 (v is negative since t3 is positive), 

a = 7416613, rn3=56'699. 

Distance of origin from centroid-vertical 7 70149, 

log yo = i8&4431056e 
Thus 

Y Yo Cos113 3980 e109 0470 

x = c716613 tan 0 

give the form of the curve. This curve, the normal curve, and the observations are 
drawn, Plate 13, fig. 16. As comparison of the observations and the normal curve shows 
an amount of skewness in the tails of the former, which would be very improbable if 
the normal curve really expresses the distribution. The skew curve really accounts 
for this divergence and is a sensibly better fit. The mean percentage errors in the 
ordinates are for the two cases 8'67 and 3 88. The skew curve is thus an excellent fit. 

The discontinuity in these teeth probably corresponds to a hypergeometrical polygon, 
of which the skew curve is a limiting form. 

(34.) Excanmple XIK-Another extremely interesting illustration of skew varia- 
tion will be found in the statistics of pauperism for England and Wales, to which my 
attention was drawn by Mr. G. U. YULE, who bad plotted the statistics from the raw 
material provided in Appendix I. of Mr. CHARLES BoOTH's 'Aged Poor.; Condition' 

In Plate 14, fig. 17, we have 632 unions distributed over a range of pauperism varying 
from 100) to 850 per 110,000 of' the population fore the year 1891. The observationes 
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are at once seen to give a markedly skew distribution. Taking 50 paupers as unit of 
variation we find 

= 6 31889, j 3'060017, 
Ad 3 6'62465, /31= '173942. 
Phi 122 1815, 

Hence 
31, - 2,/2 + 6 = '401791) 

or the curve is of Type J. 
The other constants were found to be 

r 28,1650t3, 
e 148 0886 

M= 20169714, - 24'2203 

51 995305, A2 = 7199 312 

yo 99'9065. 

Range _ 3I4196. 

Maximum '60434 to left of centroid vertical. 
Skewness = '24. 
The equation to the curve is thus 

/ CX a35 t20,1697 

y 99'9065 1 + ti) .) ( i 242203) 

For the normal curve, 
Standard deviation = 2514, 
Maximum ordinate = 100'301. 

Both skew curve and normal curve are drawn on Plate 14, fig. 13. The former is at 
once seen to be an excellent fit. We might fairly have simplified our work by taking 
zero paupers as the commencement of our range, but preference was given to the more 
general results in order to demonstrate that they give no appreciable amount of 
"C negative pauperism." The range determines a limit of about 15 per cent. as the 
greatest possible amount of pauperism. The normal curve is seen to diverge very 
widely from the statistics besides giving an appreciable amount (3 to 4 unions) with 
"negative pauperism." The point-binomnial for these statistics is also figured on the 
plate. Its constants are P = '833, q = '167, n = 14'4834, c = 110306, the start of 
the binomial being 5'81503 to the left of the centroid-vertical see ? 5. The fit is a 
very close one, the mean error of ordinate = 5'37, and the suggestiveness of such 
results for social problems needs no emphasising. 

The case is of peculiar interest, because the statistics of pauperism are known to 
give a definite trend to the distribution, i.e., if the statistical curve of pauperism for 
1881 be compared with that of 1891, for example, the maximum frequency of the 
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earlier will be found at a much higher percentage. The whole frequency curve is 
sliding across from right to left. Now it is of interest to notice that in this, as 
in other cases where the trend of' the variation is known a priori, the skew curve is 
shifted away from the normal curve in the direction in which variation is taking place 
with lapse of time. It is not safe at present to extend this to all biological instances, 
but the result suggests, for example, that there is a secular progression towards brachy- 
cephaly in Bavarian skulls (fig. 8), towards reduced antero-lateral margin in crabs 
(fig. 4), towards increased height in St. Louis school-girls (fig. 7), and towards long- 
sightedness in Marlborough School boys.@ I believe most suggestive and important 
results niight be obtained for the theory of evolution, if we only had the series of 
skew curves for a biological case of progressive variation in the same manner as we 
have for pauper percentages. 

(35.) Example XV. The theoretical resolution of heterogeneous material into 
two components, each having skew variation, is not so hard a problem as might at 
first appear, and I propose to deal at length with the subject later. If there be more 
than two components, the equations become unmanageable. In this case however, if 
the components have rather divergent means, a tentative process will often lead to 
practically useful results. To illustrate this I propose to conclude this paper by an 
example of a mortality curve resolved into its chief components. By a mortality 
curve I understand one in which frequency of death (for 1,000, 10,000, or 100,000 
born in the same year) is plotted up to age. I have worked out the resolution for 
English males, and for French of both sexes. The generally close accordance of the 
results for both cases has given me confidence in their approximate accuracy. The 
method adopted was the following: An attempt was made to fit a generalised 
frequency curve to the old age portion of the whole mortality curve, the constants of 
this curve being determined from the data for four or five selected ages by the method 
of least squares; the frequency curve so determined was subtracted from the total 
curve, and a frequency curve fitted by the same method to the tail of the remainder. 
This second component was again subtracted and the process repeated, until the 
remainder left could itself be expressed by a single frequency curve. The conm- 
pornents thus obtained were added together, and a tentative process adopted of 
slightly modifying their constants and position, so that the total areas of the coni- 
ponents and of the whole mortality curve coincided. It was soon obvious that no 
very great change either in the constants or position was permissible, if the sum 
of the components was to give the known resultant curve, hence I feel very confident 
that whatever be the combination of causes which result in the mortality curve, that 
curve is very approximately to be considered as the compound of five types of 
mortality centering about five different ages. The allied character of the results 
obtained for both French and English statistics confirms, this view. 

* Dr. ROBERTS' statistics, which I have reduced to skew curves, but have not reproduced in this 
uecmoir. 
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Professor LEXIS has already suggested that the old age distribution of mortalitv 
is given by a normal curve." Now, although the rougher French statistics give 
a fair approximation to a normal curve, this is not true for English males. The 
curve for old age is of Type I., but for all practical purposes it may be treated as one 
of Type III. Whatever be the chief causes of old age mortality, they extend very 
sensibly through middle life, and less sensibly through youth, only becoming inappre- 
ciable in childhood. Hence, if we speak of our first component as the " mortality of 
old age," the name is to be understood as referring to a group of causes especially 
active in old age mortality, but not excluded from other portions of life. The 
second and third components I found to be skew curves, but so nearly normal that to 
my degree of approximation no stress could be laid on the skewness obtained. The 
fourth component was a markedly skew curve, also closely given by a curve of 
Type III., and corresponding in general shape to the mortality curves of fevers 
peculiarly dangerous in childhood (e.g., diphtheria, scarlet fever, enteric fever, &c.). 
These three components I have termed respectively the mortality of middle life, of 
youth, and of childhood. I found it impossible to fit the remainder of the original 
mortality curve with any type of generalised curve, so long as I supposed the 
mortality frequency to commence with birth. I was therefore compelled to suppose 
the set of causes giving rise to "infantile mortality" extended into the period of 
gestation, and I obtained a satisfactory fit for the infantile mortality frequency, when 
the range of the curve started about *75 of a year before birth. The form taken by 
the curve is the extreme type in which the curve is asymnptotic to the ordinate of 
maximum frequency (cf. Examples X.-XII.). The five fundamental components of 
the mortality curve for English males are the following, the numbers referring to 
1000 contemporaries, or persons born in same year 

(A.) Old Age Mortality. 

Total frequency = 484'1. 
Centroid-vertical at 67 years. 
Maximum mortality 15'2 at 71'5 years. 

The equation ist 

y 15'2 1- j-755 2215x, Y ( ~~35) 

the axis of y being the maximum ordinate and the positive direction of x towards 
age. The skewness of the curve = 345, and its range concludes at 106 5 years. 

The corresponding French component = 411, but the maximum mortality (16'4) 
occurs at 72'5 years. 

* ' Zur Theorie der Massenerscheinungen in der menschliebon Gesellschaft,' ? 46. Freiburg, 1877. 

t Unit of x = 1 year, unit of y = I death per year. 
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(B.) Mortality of Middle Lifie. 
Total frequency - 1.73 '2, 
Centroid-vertical at 41*5 years. 
Maximum mortality = 5'4. 

The curve is very approximately normal, and has at standard deviation of 12'S 
years. The corresponding French component =1 80 deaths, standard deviation 
12 years, with a maximum of 6 at 45 years. 

(C.) Mortality of Youth. 
Total frequency 50'8. 
Centroid-vertical at 22'5 years. 
Maximum mortality - 2'6. 

The curve is very approximately normal, with a standard deviation of 7.8 years.* 
The corresponding French component gives a total mortality of 78, standard deviation 
of 6 years, and a maximum of 5'2 at 22'5 years. 

The greater and more concentrated French mortality of youth is noteworthy. 

(D.) M1Jortality qf Childhood. 
Total frequency = 46'4. 
Centroid-vertical at 6'06 years. 
Maximum mortality - 9 at 3 years. 

The equation to the curve, the axis of y being maximum ordinate, is 

y = 9 ( I + x)-3271 e-327ix 

Thus the skewness of the curve = '87, and the range commences at 2 years. 
The French component appears to be shifted further towards youth. It gives a 

total of 47 deaths, centroid at 8'75 years, and a maximum of 5 8 at 5'75 years, 
skewness = '71. Childish mortality is therefore, if these results be correct, more 
concentrated, and at an earlier age in. England than in France. 

(E.) Infantile Mortality. 
Total frequency after birth 24 2 7. 
Maximum frequency after birth, occurs in first year and equals 156'2. 

The equation to the frequency curve is 

y? = 236'8 (x + 75)>5 e'7x, 

the origin being at birth, the skewness '707, and the centroid at '083 year, = 1 month 
neatly, before. birth. Taking the corresponding French component, we have a total 
frequency after birth of 284, with 186 deaths in the first year of life. Infantile 
mortality is therefore considerably greater in France. 

@ The mortality of youth would be better expressed by a curve of type y ,- y - 2o ) see onr 

? 13 (v.). 



MR. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 409 

If we investigate the areas of our infantile mortality curve, we have the following 
deaths 

Theory. Statistics. 

1st year of life. . . . 156-2 158 5 
2nd year of life . . . 535 51P2 

After this the mortality of childhood begins to sensibly increase the infantile 
mortality. Turning to the " antenatal " portion of the curve, we have the following 
results, of course not verifiable from ordinary mortality statistics:- 

(i.) The total "antenatal" deaths for the 9 mjnonths preceding birth are 605 for 
every 1000 actually born and registered. 

(ii.) cc Antenatal " deaths for the 6 months immediately preceding birth are 214 for 
every 1000 born. 

(iii.) " Antenatal " deaths for the 3 months immediately preceding birth are 83 for 
every 1000 born at the proper period. 

The 391 " deaths " of the first three months of pregnancy would not be recorded, 
and in many cases possibly pass without notice. The 214 deaths of the remaining 
six months would be considered as miscarriages or still-births. The proportion of 
1 in 6 of such accidents to births of the normal kind does not appear excessive. On 
the average Dr. GALAPIN says such an occurrence is " the experience of every woman 
who has borne children and reached the limit of thle child-bearing age." So far then 
there appears nothing to contradict our theoretical results in what is known of the 
first six months of antenatal life. 

For the last three months we have more definite data. According to our curve 
we have 83 deaths (per 1000 born) in the last three months before birth, or 83 in 
1083 pregnancies = about 7*7 per cent. Now this percentage must consist of two 
factors-still-born children and children who, born before their time, die shortly 
after birth, and who would not be recorded in any proper proportions in statistics 
based on census returns, nor as a rule in the returns of maternity charities. 

For statistics of still-births, I find: 
per cent. 

Dublin Rotunda Hospital (1847-54). 69 
(1871-75)...i 

Dr. J. H. DAVIS for 14,000 births for a large maternity charity 
in St. Pancras. 4 

Guy's Hospital Lying-in Charity, 25,777 births, 1,127 born 
dead or died within a few hours, 1000 corresponding to 
births in the last three months of pregnancy. 3,84 

NEwsHoLME's " Vital Statistics " (no authority cited) . . 4 
MDcCxCCV.-A. 3 G 
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It would thus appear that there are 4 to 5 per cent. of still-births, thus leaving 
21 to 37 per cent. of deaths to be accounted for-if there is any validity in our 
analysis-by deaths of children born before their proper time and dying before 
their proper birthdays. Such deaths would not appear in the category of still-born 
children in the returns of the maternity charities, nor in any true proportion in the 
census returns. 

Thus, while it is impossible to assert any validity for the antenatal part of our 
curve of infantile mortality, while, indeed, the constants of that curve, and con- 
sequently the percentages of antenatal deaths, might be considerably modified had 
we surer data of the actual deaths in the first year of life; still there appears to be 
nothing wildly impossible in the results obtained, and they may at any rate be 
suggestive, if only as to the nature of those statistics of "antenatal " deaths, which 
it would be of the greatest interest to procure. 

The absolute necessity of skew curves in all questions of vital statistics is sufficiently 
evidenced in this resolution of the general mortality curve. A complete picture of the 
resolution into components of the mortality curve is given (Plate 16, fig. 18), with 
a separate figure on an enlarged scale of infantile mortality. 

(36.) In conclusion, there are several points on which it seems Worth while to insist. 
The normal curve of errors connotes three equally important principles: 

(i.) An indefinitely great number of " contributory" causes. 
(ii.) Each contributory cause is in itself equally likely to give rise to a deviation of 

the same magnitude ini excess and defect. 
(iii.) The contributory causes are independent. 
The frequency of each possible number of heads in repeatedly throwing several 

hundred coins in a group together, practically fulfils all the above three conditions. 
Condition (ii.) is not, however, fulfilled if a number of dice be thrown or a number 

of teetotums of the same kind be spun together. Condition (iii.) is still fulfilled. 
Condition (iii.) is not fulfilled if p cardslbe drawn out -of a pack of nr cards containing 

r equal suits, supposing the p cards to be drawn at one time. Now, it appears to 
me that we cannot say c2 priori whether the example of tossing, of teetotum- 
spinning, or of card-drawing is more likely to fit the proceedings of nature. There 
is, I think, now sufficient evidence to show that the conditions (i.) to (iii.) are not 
fulfilled, or not exactly fulfilled, in many cases-in economic, in physical, in 
zoometric, and botanical statistics. We are, therefore, justified in seeing what results 
we shall obtain by supposing one or more of the above conditions which lead to the 
normal curve to be suspended. The analogy of teetotums and cards leads us to a 
system of skew frequency curves which 'in this paper have been shown to give a very 
close approximation to observed frequency in a wide number of cases--an approxi- 
mation quite as - close as the writer has - himself obtained between theory and 
experiment in very wide experiments in tossing, card-drawing, ball-drawing, and 
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lotteries. But the introduction of these skew curves leads us to two important 
conclusions 

(i.) If a material be heterogeneous we have no right to suppose it must be made up 
of groups of homogeneous material each obeying the normal law of distribution. Each 
homogeneous group may follow its own skew distribution. 

(ii.) If material obeys a law of skew distribution, the theory of correlation as 
developed by GALTON and DICKSON requires very considerable modification. 

We may note two points bearing on these two conclusions, which do not seem 
without interest for the general problem of evolution. Fever mortality curves are 
skew curves. The general mortalitv curve-4frequency of death at different ages-- 
is a compound of many diseases, but with sufficient approximation, it can be resolved 
into five components; three of these components are markedly skew, the other two 
less so. Selection, according to age, is thus distributed with different degrees of 
skewness about five stages in life; this at least suggests that selection according to 
the size or weight of an organ may be compound, if we take a considerable range of 
size, and that the components may have varying degrees of skewness. 

The correlation of the ages of husband and wife at marriage is a subject with 
regard to which we have a very fair amount of material. For a given age of the 
husband, the frequency of marriage with the age of the wife fits very closely a curve 
of Type IV., and with sufficient exactness very often a curve of Type MIT.* The 
sections of the surface of frequency are oval curves differing entirely from the ellipses 
of the GALTON-DICKSON theory, but resembling in general the "oval" polygons 
obtained by taking horizontal sections of the frequency polyhedron for the correlation 
of cards of the same suit in two players' hands at whist. Plate 9, fig. 19, shows how 
widely these differ from ellipses. There seems therefore to be considerable danger 
in assuming in vital statistics, whether in man or the lower aniimals, that the " con- 
tributory" causes are independent. All the statistics for sizes of organs in animals, 
which I have yet analysed, if they are not compound, seem to agree in following a curve 
of Type IV., and suggest this kind of inter-dependence of the " contributory " causes. 
Their correlation surfaces of frequency will thus have for lines of level skew ovals- 
what for want of a better name may be termed "whist ovals" as distinguished 
from the ellipses which flow from the normal frequency surface. The remarks from 
quite a different standpoint of RANKE on skull measurements seem to lead to the 
same conclusion. I propose on another occasion to illustrate the resolution of 
compound curves into skew components, and further to deal with the main features 
of correlation in cases of a skew frequency distribution. 

* I have fitted some of PEnozzo's marriage statistics with skew curves, but reserve their discussion 
for the present, as they belong properly to the theory of skew correlation. 

3 (G2 
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NOTE. 

Added May 24, 1895. 

[Since writing the above memoir my attention has been drawn to a note iln 
Dr. WESTERGAARD'S " Theorie der Statistik," referring to Professor T. N. THIELE'S 
treatment of skew frequency curves. I have procured and read his book, 'Forelaes- 
ninger over Almindelig Iagttagelseslaere,' Kjobenhavn, 1889. It seems to me a.very 
valuable work, and is, I think, suggestive of several lines for new advance. It does 
not cover any of the essential parts of the present memoir. Dr. THIELE does indeed 
suggest the formation of certain " half-invariants," which are functions of the higher- 
moments of the observation-quantities corresponding to the 4 - 3PU2' t5 - 1 OPWL3, 
&c., of the above memoir. He further states (pp. 21-2) that a study of these half- 
invariants for any series .of observations would provide us with information as to the 
nature of the frequency distribution. They are not used, however, to discriminate 
between various types of generalized curves, nor to calculate the constants of such 
types. A method is given of expressing any frequency distribution by a series of' 
differences of inverse factorials with arbitrary constants. Thus if 

and 

A/3,z (X) = Aid (x + 2) - 13 (x 2) 

we can express any law of frequency y _f(x) by 

f'(x) bof,, (x) + b1 5A3-_ (x) +* + i Ab 0 (x), 

where the constants b0, b .. .N can be determined numerically when the frequency 
of n + I. chosen derivation-elements is known. 

1 see a possibility of more than one theoretical development of interest, especially 
in relation to compound material, from this development of Dr. THIELE'S, but I doubt 
whether it can be of practical statistical service even as an empirical expression for 

frequency. Instead of having the 3 to 5 constants of our generalised curves, the full 
value of Dr. THIELE's expression requires as many constants as there are recorded 
frequencies, and then expresses the result in functions like Ar&/3 (x), by no means easily 
realised or likely to appeal to the practical statistician. It is true the complete series 
gives absolutely accurately the frequency of all the points used in the calculation, but 
it does not, like the generalised curves, indicate the purely accidental variations of 
the frequency. If, on the other hand., we take, as Dr. THIELE suggests, some half- 
dozen terms only of the series--which give the really essential character of the 



MR. K. PEARSON ON THE MATHENIATICA[ THEORY OF' EVOLUTION. 413 

frequency-we obtain results which, although more complex in form, are not as satis- 
factory as those given by the generalised curve: 

For example, Dr. ThIELE gives the following series (p. 12): 

Val aes .7 8 .9 10 11 12 1:3 14 15 16 17 18 9 
____ ___ ___ ___ ___ __I _ v A___ _ __ __ __ _ _ __ _ . _ __. _ , 

Frequency. 3 7 5 101 89 94 70 46 30 1t5 4 5 1 
_ __ _ _ _ _ ___ __ ____ _ _ __ _ _ H 

His "Faktiske Fejllove " gives 

y = '1221,8, (x) + '278 A,811 (x) 4-600 A2,310 (x) 

+ 2 1 6 A339 (x) + '2 78 A4)38 (x) -3 1 8 A5137 (x) 

+ .574 A636 (x) + '596 A7)35 (x) + .499 A81 (X) 

+ '259 A9A3 (X) -0645 A10182 (x) - '0303 Ai'8 (x) 

-'0088 A'2180 (x). 

He tells us that 6 terms practically suffice, the additional terms merely accounting 
for the individual irregularities of this particular 500 observations. Without speci- 
fying what the observations are, he tells us that the possible values run from- 4 to 28, 
or that the range is really limited. 

If we fit our generalised curve of Type, I., we find for its equation: 

IV 3, 89708( X 17,27285 
y =98 '801 (i + 4.11 I x)77f8 

the origin is at 11'191, or the range runs from 6'6715 to 31'1202, i.e., is a range of 
24-5487 instead of 25, but is shifted some 2 to 3 units. Considering the small 
number of observations, this is not a bad approximation to a marked feature of the 
distribution not indicated on the surface by the observations, nor discoverable from 
the " Faktiske Fejllove." 

Comparing our curve (i.) with (ii.) the actual statistics-all 13 terms of the 
"Faktiske Fejllove " series, and with (iii.) the first 6 terms of the same series, we 
have the following results: 

Values. 7 8 9 1 11 12 13 14 15 16 17 18 19 
(i.). 1 10 42 80 99 92 70 48 29 15 6 3 1 

(ii.).3 7 35101 89 94 70 46 I 30 15 4 5 1 1 11 40 82 103 92 70 48 26 13 8 4 1 

The generalised curve here gives slightly the better results in addition to its more 
easily realised form, and its fewer constants (iv.). 
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On the other hand, there are, I think, some points of first-class theoretical impor- 
tance in the mode adopted by Dr. THIELE for expressing frequency; it gives us a 
means of expanding all varieties of frequency curves in a series of factorial functions 
which may lead to important theorems in the analysis of heterogeneous material.] 

PLATES. 

The scale of the accompanying figures is not that of the original drawings, and the 
clearness and distinctness of the several curves of the same figure have been, in 
several instances, partially lost by the process of reproduction and reduction. In 
every case the square element of the figure corresponds to the square centimetre of 
the original diagram, and is spoken of both in the text of the memoir and on the 
figures themselves as a square centimetre. The scale of actual reduction is indicated 
by a fraction placed at the lower right-hand corner of the figure. 
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