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‘PART 1.—THEORETICAL.
Asymmetrical Frequency Curves,

(1) Ax asymmetrical frequency curve may arise from two quite distinct classes of
causes. In the first place the material measured may be heterogeneous and may
consist of a mixture of two or more. homogeneous materials. Such frequency curves,
for example, arise when we have a mixed population of two different races, a homo-
geneous population with a sprinkling of diseased or deformed members, a curve for
the frequency of matrimony covering more than one class of the population, or in
economics a frequency of interest curve for securities of different types of stability—
railways and government stocks mixed with mining and financial companies. The
treatment of this class of frequency curves requires us to break up the original curve
into component parts, or simple frequency curves. This branch of the subject (for
the speciul case of the compound being the sum of two normal curves) has been
treated in a paper presented to the Royal Society by the author, on October 18, 1893.

The second class of frequency curves arises in the case of homogeneous material
when the tendency to deviation on one side of the mean is unequal to the tendency
to deviation on the other side. Such curves arise in many physical, economic and
biological mvestlgatlons, for example, in frequency curves for the height of the
barometer, in those for prices and for rates of interest of securities of the same
class, in mortality curves, especially the percentage of deaths to cases in all kinds of



MR. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 345

fevers, in income tax and house duty returns, and in various types of anthropological
measurements. [t is this class of curves, which are dealt with in the present paper.
The general type of this class of frequency curve will be found to vary (see Plate 7,
fig. 1) through all phases from the form close to the negative exponential curve :

y = Ce™r*,
to a form close to the normal frequency curve

y = Ce™7,
where C and p are constants.

Hence any theory which is to cover the whole series of these curves must give a
curve capable of varying from one to another of these types, ze., from a type in
which the maximum® practically coincides with the extreme ordinate, to a type in
which it coincides with the central ordinate as in the normal frequency curve.

It is well known that the points given by the point-binomial (3 4 %)” coincide very
closely with the contour of a normal frequency curve when # is only moderately
large. For example, the 21 points of (4 4 %)% lie most closely on a normal frequency
curve, and the author has devised a probability machine, which by continually bisecting
streams of sand or rape seed for 20 successive falls gives a good normal frequency
curve by the heights of the resulting 21 columns. Set to any other ratio p:q of
division other than bisection, the machine gives the binomial (p 4+ ¢)%, or indeed any
less power and thus a wide range of asymmetrical point-binomials. Plate 7, fig. 2,
represents, diagramatically, a 14-power binomial machine.

Just as the normal frequency curve may be obtained by running a continuous
curve through the point-binomial (4 4 %)* when = is fairly large, so a more general
form of the probability curve may be obtained by running a continuous curve through
the general binomial (p + ¢)*. As the great and only true test of the normal curve
is : Does it really fit observations and measurements of a symmetrical kind ? so the
best argument for the generalised probability curve deduced in this paper is that it
does fit, and fit surprisingly accurately observations of an asymmetrical character.
Indeed, there are very few results which have been represented by the normal curve
which do not better fit the generalised probability curve,—a slight degree of
asymmetry being probably characteristic of nearly all groups of measurements.
Before deducing the generalised probability curve, it may be well to show how any
asymmetrical curve may be fitted with its closest point-binomial. This will be the
topic of the following five articles.

(2.) Consider a series of rectangles on equal base ¢ and whose Leights are respec-
tively the successive terms of the binomial (p+ ¢)* X /¢, where p +q¢=1. Here e is
clearly the area of the entire system. Choose as origin a point O distant 4¢ from the

* I have found it convenient to use the term mode for the abscissa corresponding to the ordinate of

maximum frequency. Thus the “mean,” the ¢ mode,” and the “median ” have all distinct characters
important to the statistician.

MDCCCXCV.—-A. 2Y
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boundary of the first rectangle, on the line of common bases, and let 7, be the height
of the " rectangle, or
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Let us find the values of

2{y,c X (re)t,

where s is any integer, for values of s from 0 to 4.
It is easy to see that

N e— X _(Z_ l (Z / _[ég\ [ 7

2{ge X (re)'} = a0’ 4 (9' dq) \2 i) 1P+

where the operation d/dq is repeated s times.
The operations indicated can easily be performed by putting ¢ = e when

du,

. o 7 \s
g x (o)) = (G e (o + e

and the successive values can be found by LersNirz’s theorem. After differentiation

we may put p 4 g or p 4 ¢ =1. There results:

= (y,¢) = a

(y,c X 7¢) = ac{l 4 ng}

(1. X (re)?) = ac®{1 4 3ng - 1 (n — 1) ¢*}

(¢ X (rc)?) = ac® {1 4+ Tng +6n (n — 1) ¢* + n(n — 1) (0 — 2)¢*}

(y.c X (re)*) = ac*{1l 4 1dng + 260 (1 — 1) ¢* + 100 (n — 1) (n — 2) ¢3
+n(n—1)(n—2)(n—3)¢*}.

Let NG be the vertical through the centroid of the system of rectangles, then

clearly

ON = = (y,¢ X r¢)/e = ¢ {1 + ng}.
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We shall now proceed to find the first four moments of the system of rectangles
round GN. If the inertia of each rectangle might be considered as concentrated along
ats mid vertical, we should have for the s moment round NG, writing d = ¢ (1 + ng),

aps = 3 {1y,c X (rc — d)*}.
The resulting values are
py = npgc®
s = npq (p —q) ¢
P = 1pq {1 4 3 (0 — 2) pg} o,

whence, remembering that p 4+ ¢ = 1, we find that p and ¢ are roots of

L B’ — ) g+t 0
2

2
2% — 2 — - 5 —
4 (Bpg® = pa) py + OBpg?
R o = V12 06p’ — p) py + 3}
T (5.2 97 T
(Bpg® — ) py + s Mo

Thus, when uy, pg, and u, have been calculated for the frequency curve, the
elements of the point-binomial are known. These results were given by me in a
letter to ¢ Nature,” October 26, 1893.

They give quite a fair solution so long as n is large and ¢ small, z.e., so long as the
asymmetry and the “excess” (‘ Phil. Trans.,” vol. 185, A, p. 93), measured respec-
tively by ps and py, — 3pg® (which vanish for the normal curve) are not considerable,*
In many cases, however, they are considerable, and the following solution is perfectly

general.

* If y, denote the largest term in (p + ¢)" and y, the #th term beyond it, then an application of
StirLiNg’s theorem—if # be large—shows that

t>t— / t \—t—gm—%
wn=(1 =" (T

Take
t \
log u = (t — pn — %) log <1 —p—n—)
P
log ¢ = (——-t—gn—-—é)]og(l +ﬁ)

and expand the right hand side in powers of ¢, we find

1 # 1 £ 1 o/ 3 _
logu = t<1 + Z]E);L) *2“137;{1 —_ %} — %2<1 _})—17> — ;yﬁ(l — 577)7;> — ete.
Hence, remembering that p + ¢ =1, we have

Hp=o) _ () 1-tpi) Plpon) () 1= p)
Zpan - 2npg 2npg bpg*n® \" T apg

log wv = —

t ‘ 3 (1 —4pq + 2p°¢%)
— 12]&3957;3 <1 —_ ,qu —_ QWPQ ) + ete.
Now, making use of the values given in § 2 for py, g, and g, and writing ¢ X ¢ = 2, and y; =,
we find

2Y 2
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(3.) To find the nth moment of a trapezium ABCD about a line parallel to its
parallel sides, 7, and v, being the lengths of the parallel sides, x,, @,, their distances
from the moment-axis, and z, — x, = ¢.

4 2z
2z
Z2
gg
a |
7
22
ZZ|
0 e, —> dx z
b ] d
Let M, be the nth moment. Then
)
M, = f ya" dx
Ly
. 1/27____. " xzn-i—ﬂ —_ 'Tln+2 ) Y17y — Yoy [7[727L+1 —_— xl7z+1
Ty — w4+ 2 &y — ) n 4+ 1
e no e, n(n—1 n(n—1)m—=2) ., \
= | — sy T A R - e )
\ 12 (o [4 [2 /
/ \
x,c n ., n(m—1) o3, n(n—1)(n—2) \
_ — x," e x," "¢ e S
L S e S VR S ST SR

(4.) Now consider a curve of observations made up of a series of trapezia on equal
bases, as in the accompanying figure :

91‘2» B —1/a_ M3 Mf’f 0 S I S i‘;, _1(3.R )3 (3 _92192..9(3__
y =1y, ;2—;2(1 Bim3(3-R) e—i? % eéizg(l IB=13=B) o - ]2#22(361 F3-B)— BB = BP=5B=B) B) « ote.

where B, = u?/p® and By = p,/po®.
This appears to be the more general form of a result given by Professor Enarworrh, ¢ Roy. Soc.

Proc.,” vol. 56, p. 271.
For the normal curve puy = 0, g, = 3p,%; hence, if p does not differ much from ¢, 8, and B, — 3 will
be small, and we may neglect their products with 2/v/p;.  Thus approximately

» s (=)
Y=Yol w0 3ua/ -

This agrees with Professor Kpcuworrn’s special case if we expand the second exponential. His
“ negative frequency "’ is accounted for by the fact that he has only taken the first terms of a long

series, ©.e.,
iy Lo \
2/ I3 o 3
0 e x4ty 11— Sl — ¢ .
y=Y { 2/‘2‘2< 3#2) }

T have not considered this form of the skew-curve at length, because it is only a first approximation to
the more general forms considered in this paper, and further, because it is only applicable in practice

within extremely narrow limits.
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Here 4, yy, %, . . . ¥, are the frequencies of deviations falling within the ranges
@, 4 e, @, + Le, w5+ Se. .., 4 dc. .., and the tops of the ordinates are joined
to form a frequency-curve in the usual manner.

Let M, be the nth moment of the system of trapezia about the Jine Oy, then

n(n—-l)(n——Q)(rb—‘%)

2" n n—l _
( D g8 6 AR R >}

M, = S{Zy, ( ;2

In particular, if we take Oy in the position Oy at distance ¢ from y,, we have
x, = re, and accordingly,

M, = o+ <N Rl g mO=DO=20=D g
— 1D (n —2)(n — — —
L (n—1)(n )(272)1606) (n —4)(n —5) N .+ etc.) ’
where N, = S (y,7*).
In particular,
M,O = cN’O,
M, = N,

My = ¢ (N'y + '),

My = c*(N'g + §N7),
M,=c (N, + N, + %N'),
M5 =¢® (N5 + N3 + 3N°)).

When we put M';/M'y = ps, and N';/N’) = »/;, these reduce to

ou’,l = CV’D

o= ¢ (vy + )

py=c*(Vy + &),
po=c* (Vs + vy + 1%5v0),

ps=2c" (Vs + 3v's + ).

Now let p, be the value of the nth moment of the trapezia system about the
vertical through its centroid divided by its area.
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We have :

, ., n{n-1) ,, , nin—1)ymn—2) ,., ,
po= o= mp e e s P s ete

Thus we find :

py =0,
py = ¢ (vy — v + {§)),
g = P (Vg — 3V vy + ),
py = ¢y (Vy — 4V,1 Vg 6020y ~ 30 (V= 0 ),
ps = & (V' = 5V vy 4 10070y — 10070y - 40 + {§ 075 — 5y vy 4+ 1200)).

Comparing these results with those given in the ‘Phil. Trans., vol. 185, p. 79,
Eq. (4), we see that treating the curve as built-up of trapezia instead of loaded
ordinates introduces the parts into the values of the u’s enclosed in curled brackets.
These additions are small, but in many cases quite sensible. Since the series of
trapezia gives in general a closer approach than the series of loaded ordinates to the
frequency curve, and, further, since the calculation of these additional terms is not
very laborious, it will be better for the future to calculate the moments of any
frequency curve from the above modified formule.

(5.) Returning now to the point-binomial, we have :

vy =1+ ng,

vy=1 8ng 4 n(n — 1) ¢>

Vig== 14 Tng + 6n(n —1)¢*+n(n—1)(n —2) ¢,

vie= 14 15ng + 25n (n — 1) ¢* 4 100 (n — 1) (n — 2) ¢*
A4 n (n— 1) (n — 2) (n — 3) g*

py = ¢ (npg + %),
py = — ¢ npq (q — p),
py = c* (35 -+ npg (2 4 3 (0 — 2) pq)).

If, instead of taking trapezia, we had taken a series of rectangles, but not, as in §2,
concentrated their areas along their axes, we should have found the following
system :

t

py = & (1pq + ),
ps = — Snpq (g — p),
py = ' (55 + mpq (§ + 3 (n — 2) pq)).

i
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Hence if we write :
po = ¢ (npq + €),*
ps = — nupq (¢ — p),
py = ¢* (e + npq (& + 3 (0 — 2) pq)),

we have :
N 19 - e 1 1
For trapezia : 6 =% =15 =2
For rectangles : 6= 1% €& =g =1,

Il
o
)

Il
~

1
For loaded ordinates : ¢ =0, ¢

and the above general system may be applied to all cases.
Writing )

IUJ:%M ] — My

z=mnpq, B = pEE and B, = ;‘7 ,

we have by elimination the cubic for z:

+ 2 (26, + 9816 — 2B5e)°) + 3By = 0.

The remaining constants of the binomial are :
T 1 =B+ efz)?’
pg =% (L — Bz (1 4 efz)),

o= A/t
2+ g

(6.) Let us illustrate these results by a mnumerical example. Plate 8 gives
Dr. VENN'S curve for 4857 barometric heights. Along the horizontal, 1 cm. equals *1”
of height of barometer, and the scale of frequency is 1 sq. cm. = 28304 observations.
The centroid vertical and the second, third, and fourth moments about it were found
for mef by the graphical process described, ¢ Phil. Trans.,” vol. 185, p. 79. We have
the following results :—

n

and

% This result scems of considerable importance, and I do not believe it has yet been noticed. It gives
the mean square error for any binomial distribution, and we see that for most practical purposes it is
identical with the value +/npg, hitherto deduced as an approzimate result, by assuming the binomial to
be approximately a normal curve.

+ If we take 2z + ¢, = x the fundamental cubic reduces to

(6438 —28) x> — @ —3B) X" +ox—a5=0
a form in which the coefficients are casily calculated and the nature of the roots discriminated.
1 By Mr. G. U. YuLe, who has given me very great assistance in the laborious calculations required
in the reduction of frequency curves. We have used, with much economy of time, the “Brunsviga”

calculator.
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a = 171"6,
g = 1595,

Mo = 10714,
Wy = 32634,
all in centimetre units.
These give
B, = ‘24401, B, = 31739,
Hence for trapezia,
"38422% — *7499172° 4 ‘018008z -+ 003389 = 0,

and for rectangles,
*38422% — *874962° — 003832z 4+ 000424 = 0.

These give the following solutions :—

Trapezia. Rectangles. Lines.

z 1:92516 2-28034 2:6028
7 19-379 23-983 285293
P ‘8881 ‘8936 -89985
q ‘1119 1064 *10015

¢ 2:2017 20712 1:974
afc 77°94 8285 8693

d 6:976 73562 7614

|

Here d = ¢ (1 + nq) gives the distance of the start of the point-binomial from the
centroid vertical. The three point-binomials are therefore

77-94 (8881 - -1119)w%,

8285 (8936  "1064)*%,

8693 (89985 - *10015)*7*?,
respectively.

These three point-binomials are represented in Plate 8, fig. 8. It will be noticed
that they all lie very close to the barometric curve; they would be still closer if that
curve were a real curve and not a polygonal line. The total areas between binomial-
polygons and observation curves, treating all parts as positive, are for the three cases,
10-3, 105, 11°0 sq. centims. respectively, or taking the base range to be 23 centims., we
have mean deviations from the observation curve of '448, *457, *478 in the three cages
respectively. Thus the method of trapezia gives slightly the best result ; the method
of concentrating along ordinates the worst result. The total area of the curve being
1716, we have from another standpoint, mean percentage errors* in the ordinates
of about 603, 6'06, and 6°3, respectively. The generalised probability curve, if fitted
to the same observations, gives an areal deviation of 7 sq. centims., or a percentage
error of about 4. Thus it is very nearly one-third as close again as the point-binomials.

* The “ percentage error” in ordinate is, of course, only a rough test of the goodness of fit, but I have
used it in default of a better.
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As typical samples of mean percentage errors considered by various statisticians to
give good results, I may note the following, the frequency being about 1,000 or
upwards :—A1RY, 9 ; MERRIMAN, 13°5 ; GALTON (Anthropometric), 7 to 15 ; WELDON
(Crabs), 67, (Shrimps), 8:8; Stiepa (Skulls), 7°6; PorTER (School Girls), 7:7; Prrozzo
(Recruits), 6'8 ; BRADLEY’S observations, 585 ; PEARsoN (Lottery), 67, (Tossing), 6°6.

It is therefore clear that our point-binomials and generalized curve may be con-
sidered to give good results.®* It will be noticed, however, that a little difference in
the method of calculating the point-binomials leads, without much alteration of the
percentage error, to a considerable change in their centroid-positions and the magnitude
of their constants.t  Generally speaking we may conclude that in round numbers the
barometric frequency corresponds to the binomial (*9 + “1)%, or to the distribution of
zeros when 20 ten-sided teetotums, marked 0, 1...9, are spun together. There is
an apparent upper limit to the height of the barometer, and its deviation below the
mean can be much greater than its deviation above. At the same time within the
narrower range round the mean, the frequency of a high barometer is greater than
the frequency of a low barometer ; the odds against a “ contributory cause” tending
to a low barometer being about 9 to 1. T propose to investigate a wider series of
barometric observations, in order to test how far the conclusions which may be drawn
from Dr. VENN'S statistics are general.}

A rather interesting point may be considered at this stage. Is it always possible
to fit a point-binomial to a series of observations with a chance frequency ? Can we
better the normal curve by a point-binomial ? The answer is Yes, if the fundamental
cubic in  (second footnote, p. 351), has a real positive root. Now for the normal curve
2 (3pg® — py) g + Bps?, or 6 4 38, — 28, is zero. For the loaded ordinates ¢ will
only be real if this expression be positive. It may, however, take small negative
values for the trapezia, in which case x itself will be small and only within narrow
limits give suitable values for n.

Hence, for real values of n, p and ¢, it is impossible to fit a point-binomial to a
series of observations for which 6 -4- 38, — 28, has a large negative value. The normal
curve, for which u, = 3u,?, is nearer to any such observations than a point-binomial.

For example, by aid of the modified expressions given in this paper, p. 350, we have

* As another manner of testing, compare the ten-points of the point-binomial for lines with obser-
vations :—
Theory . . . . . 56 159 218 19 119 57 21 -7 -2 -03
Observation . . . 57 158 221 188 12 58 23 11 2 -00

+ A curve drawn through the 30 points of the three point-binomials would be very close to the obser-
vations. As a matter of fact, the skew probability curve passes very near to all 30 points,

+ [Miss A. Lee has since calculated the constants of three years of Eastbourne barometric observations
for me. While » and ¢ differ widely from the Cambridge values, she finds p = 89375, ¢ = 10625, a
striking and suggestive agreement. ]

MDCCCXCOV.—A. 2 z
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for the data given for Professor WeLDON’S Crab Measurements, No. 4, ¢ Phil. Trans.,’
A, vel. 185, p. 96.
py = 76759, pg= 34751, pm, = 184:3039.
Hence,
By = ps’/p’ = 0267022,
By = /iy’ = 3°12807.

Thus 6 4 38, — 28, is positive, and accordingly no rational point-binomial is likely
to fit as well as the normal curve. As a matter of fact the fundamental cubic is now

1760382 + 1°0453272% -+ *033773z — 0003709 = 0.

The two negative roots of this equation give imaginary value for p and g. The
small positive root gives p greater than unity and ¢ regative, n is also negative.
Although I can give no interpretation to these results, it seemed well to complete in
the latter case the solution and test how near the resulting point-binomial fitted the
curves. [ found ,

z="00866, p =119268, ¢ = — "19268.

0= — 037685, ¢= 661662, d= 66645.
These give for the binomial

150°0983 (119268 — "19268) 037685
or,
15189 (1 — “161552)~ 037685,
or,

15189 + 92532 + ‘07756 + &e.

Thus the sensible part of the binomial to the scale of our figure is a triangle. 1
have drawn this binomial, see Plate 8, fig. 4. The reader will mark a fit very close
on the whole to the observations. We have the following percentage mean errors of
the ordinates :—

Normal curve. . . . . . . . 67,
Skew probability curve. . . . . 44,

Binomial . . . . . . . . . 105

We may conclude, therefore, that even if our binomial constants have unintelligible
values, yet our method will give, in many cases, a closely-fitting polygonal figure.
This remark should be read in connection with Professor EpceworrH’s somewhat
divergent views¥* on fitting chance distributions with curves other than the normal
ervor curve. It is possible in almost every case to find simple combinations of lines,

* See ¢ Phil. Mag.,” vol. 334, p. 24, ef seq., 1887.
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circles, or parabolas of various degrees which give results extremely close to any given
set of observations.

For example, taking the range of frequency to be sensibly 7 times the standard
deviation, we have the f'ol]owmg close expression for the error function by harmonic
analysis

: 2 S
v =1, {-399 1 *482 cos —”; + 109 cos (—: + 009 cos 7’} .

Here v, is the maximum ordinate,  any deviation, and o the standard deviation.
A couple of wave curves® will thus very frequently give us a close approximation to
a set of statistical measurements, quite as close as statistical practice shows the error
curve to be.

The above expression further allows the normal curve to be constructed by aid of
scale and compasses—geometrically, or its ordinates calculated from a table of cosines.

Another example of the fitting of a point-binomial will be found in Part 2, § 34,
Pauper Percentages.

(7.) Consider the point-binomial e X (4 + )", where e is any constant, and
suppose a polygon formed by plotting up the terms of the binomial at distance ¢
from each other.

Then, corresponding to x, = r¢, we have

o (m=Dm—=2)...(n—7+2)
yr = = (3)
and
Y=Y A =@t @A)
Y (Wi +90) x 0 F(n+1)e 2(n+1)c~

if &, =x, — Le(n + 2).
Now (9,41 — y,)/c is the slope of the polygon corresponding to the mean ordinate

L(Yre1 + y), or, writingt * =1 X L (n 4+ 1) &
slope of polygon Z X lean qbsclsm
mean ordinate 20

* It is often sufficient to take

Y=y, 2+ Lcos — + 1 cos ~~—) .

+ The divergence of this value of o? from the ordinary value § X 3 X = is to be noted. The two agree
sensibly if » be great. [Drawing on a large scale, however, the point-binomial (3 + £)1° and the two
normal curves with standard deviations of 1'5811 and 1'6533, I find that the latter has a mean percentage
error of on]y 1:76 as compaled with 51 of the former Thus it would appear that the nonnal curve

usually adopted.]
272



356 MR. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION.

Now compare this property of the polygon with that of the curve:

ey o —22f20°
Y=Y .
We have by differentiation :
slope of curve 2 abscissa
ordinate 26°

Hence : this binomial polygon and the normal curve of frequency have o very close
relation to each other, of a geometrical nature, which is quite independent of the
magnitude of n. In short their slopes are given by an identical relation. By a
proper choice of o and 7, we can get the normal curve to fit closely the point-
binoniial, owing to this slope property, without any assumption as to the indefinitely
great value of n. It is this geometrical property which is largely the justification for
the manner in which statisticians apply, and apply with success, the normal curve to
cases in which n is undoubtedly small. No stress seems hitherto to have been laid
upon the fact that the normal curve of errors besides being the limit of a symmetrical
point-binomial has also this intimate geometrical relationship with it.*

(8.) Now let us deal with the skew point-binomial in precisely the same manner as
we have dealt with the symmetrical binomial. Taking its form to be ¢ (p + ¢)*, we
have, if @, = » X cand \ == ¢/p: :

Y=Y 2=+ DMr—=1 200+ 1) -2+ 1)

Y +y)e  cm—=—rH+DNr+1 e+ +r1 =)

Let us write Ay = 9,1 — ¥, Az = c.
Y’r+%= %(yr+l + ?/r); X7'+%:: % (.’L’,,+ 1 + w'r)'
Then X, ;3/c =+ 4, and :

* The following table shows the closeness of frequency within a given range as determined by the

binomials :—
F¥requency per cent.
?ﬁf&ﬁ | Normal curve.
(1 + 1)1, (1 + )™,
3 24 23 24
5 37 37 38
7 50 52 52
11 71 73 73
33 100 100 100

Here the distribution of 100 groups each of 100 events is seen to be practically the same whether we
take n = 10 or n = .
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Ay , x(n+1)—(1+7x)<————X2”-——]§>
. e
A& X Yrsy "x(n+1)+<1_x)éﬁ_1§>
(4

or, if X/, ., =X,y —c(34+qg(n+1),
— - X/r+%

- ¢
pg(n+ 1)+ (p—9q) ) X'r 43

- 'YX/7-+§
=
a+ X,

oy 2 gt 1)e
y=Gopemde="" 2,

The curve which has the same law of slope as this skew binomial is :

?/ = ?/0 (]_ + x/a,)yae-wj'

(9.) This curve accordingly stands in the same relationship to the skew binomial
as the normal curve to the symmetrical binomial.* There are several points, however,
to be considered with regard to it. In the first place it is usually assumed that = is
indefinitely great and c¢ indefinitely small, and then it is supposed that we may
neglect (p — q) ¢X', ;; as compared with pg (n + 1) ¢% and so we deduce the normal
error curve whether p be equal to ¢ or not. But I contend that this is unjustifiable
except for very small values of X’.,,. When the deviation X’ is considerable and
¢ vanishingly small, X" will be an indefinitely great multiple of ¢ ; ¢ must be in fact
the unit in which X’ is measured and unless p = ¢, the ordinary normal curve is only
an approximation, even if # be large, near the maximum frequency. In the next
place, when we speak of n being large, are we quite clear as to what we mean in the case
of physical or biological frequency curves? We speak of a multiplicity of small
“causes” determining the actual dimensions of an organ, or the size of a physical
error, or the height of the barometer. But it is less clear why this multiplicity
should be identified with the infinite greatness of n. If we take Dr. VEnN's
frequency curve for barometric height, we see that the closest point-binomial is by no
means consistent with either p = ¢, or with #n being indefinitely great, Further,
many statistical results in games of chance are given with great exactness by the
normal curve, although we are then able to show that n is quite moderate.

Now, it is true that the biological and physical statistics to which we are referring,
give essentially continuous curves, but it does not seem to follow of necessity that »
must be infinite ; while their frequent skewness sufficiently indicates that the neglect

¥ Note again the deviation of the constant pg (n + 1) ¢? from its usually adopted value pgnc®
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of X',,, as compared with o is unjustifiable. Thus, the maximum of a fever
mortality curve cannot be an infinite distance from birth, which limits the curve in
one direction, nor an age-at-marriage curve have a maximum frequency infinitely
distant from the age of puberty, nor a frequency of interest curve separate its
maximum, between 3 or 4 per cent., by an infinite distance from 0 per cent. It is
clear, therefore, that if such frequency curves as those referred to are to be treated
as chance distributions at all, it would be idle to compare them to the limit of a
symmetrical binomial. We are really quite ignorant as to the nature of the contri-
butory “ causes ” in biological, physical, or economic frequency curves. The continuity
of such frequency curves may depend upon other features than the magnitude of n.
If I toss twenty coins, a discrete series of 0, 1, 2, 3, . . . 20, heads is the only possible
range of results. Kach individual coin, here representing a “ contributory cause”
can only give head or tail, and so many whole coins must give head, so many tail.
If T want to make any ratio of head to tail, I have to take an indefinitely great
number of coins, for each ¢ contributory cause” must give a unit to the total. But
it may possibly be that continuity in biological or physical frequency curves may
arise from a limited number of “contributory causes ” with a power of fractionizing
the result. 'We cannot conceive on the tossing of 20 coins that 135 will give heads
and 65 will give tails, we are obliged to deal with 200 coins, 185 giving heads and
65 tails. Yet the two things are not identical. The former corresponds to a value
intermediate between two ordinates of (L + %)%, and the latter to a definite ordinate
of (5 +%)*. So long as we remain in ignorance of the nature and number of
“ contributory causes ” in physics and biology, so long as we do find markedly skew
distributions, it seems to me that we must seek more general results than flow
from the assumption that p = ¢ and n = o. The form of curve given in § 8 above is
suggested as a possible form for skew frequency curves. Its justification lies
essentially, like that of the normal curve, in its capacity to express statistical
observations. .

(10.) But it must be noted that the generalised probability curve in § 8, although
it contains the normal curve as a special case, is not sufficiently general. Tt is
limited in one direction, indefinitely extended in the other. This limitation at one
end only, corresponds theoretically to many cases in economics, physics, and biology.
But there are a great variety of cases in which there is theoretical limitation at both

ends ; that is to say, there is a limited range of possible deviations. For example,
let a trapezium, ABCD, of white paper be pasted on a cylinder of black surface with
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ef, the axis of symmetry parallel to the axis of the cylinder. Then, if the cylinder
be rotated, we shall have a series of grey tints from a darkish e to a lighter f.
Now, if we ask several hundred persons to select a tint which would result from
mixing the tints at e and f, we shall obtain a continuous frequency curve, falling,
however, entirely within the range ¢ to f. Or, again suppose a frequency curve
obtained by plotting up the frequency of a given ratio of leg-length to total body-
length, or of carapace to body-length. Here the range must lie between 0 and 1.
It is not that other values are excessively improbable, they are by the conditions
of the problem absolutely impossible. Hence, it is clear that the curves obtained
by Professor WELDON and Mr. H. TrHoMPsoN in the case of shrimps, crabs, and
prawns, can only be approximately normal curves, even if it were possible for the
ratios to run from 0 to 1. But as a matter of fact, the possible range is very
much smaller. We may not be able to assert, ¢ priori, what it is, but for an
adult prawn to have a carapace % or tggp of its body-length, or a man a leg
% or 4% of his body-length, may be regarded as impossibilities ; they are abnoxr-
malities, which could hardly survive to the adult condition. Precisely the same
remarks apply to skull indices, and probably to the relative size of all sorts of
organs in the adult condition. We may not know the range, @ priors, but we are
quite certain that one exists, and it is a quantity to be determined—just as the mean or
the standard deviation-—from our measurements themselves. We may take it that in
most biological measurements of adults there is a range of stability, so to speak,
organs not falling within this range are inconsistent with the continued existence of
the individual, with the assumption that he has lived to be an adult.* Nor is this
question of range confined to biological statistics. A barometric frequency curve
must show the same peculiarity ; there are excessively low and excessively high
barometric heights which would be not only inconsistent with the survival of any
meteorological observer, but also with the existing features of physical nature on
this earth. In vital statistics we find precisely the same thing, a curve of percent-
ages of mothers of different ages for the children born during any year in a country
would be definitely limited by the ages of puberty and the climacteric, which cannot
be pushed indefinitely towards childhood and senility respectively. Again in disease
and mortality curves, while the lower limit of life is clear, it is highly probable that
an upper limit exists, if we can only fix it by investigation of our statistics them-
selves. A man of the present day, as now organised, may be able to live 120 years,
perhaps, but we have exceeded his vital possibilities if we take, say, 200 years.

Thus the problem of range seems a very important one, it theoretically excludes the
use of the normal curve in many classes of statistics; it is quite true that, for
many practical purposes, frequency curves of limited range may be sensibly identical
either with unlimited curves, or even with normal curves, but, in other cases, this

* Absolute malformations, congenital, or due to post-natai accident are excluded. Abortions or
amput&tions would be naturally excluded from our measurements,
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is not so, and under any circumstances the limited curve may actually give information
as to the possible range—the “ limits of stability "—which is itself of great value.

We have, then, reached this point: that to deal effectively with statistics we
require generalised probability curves which include the factors of skewness and range.
The generalised curve we have already reached, possesses skewness, but its range
is limited in one direction only.

Accordingly, we require the following types of frequency curves :—

Type I.—Limited range in both directions, and skewness.

Type II.—Limited range and symmetry.

Type I1I.—Limited range in one direction only and skewness.

Type IV.-—Unlimited range in both directions and skewness.

Type V.—Unlimited range in both directions and symmetry.

Type V. is the normal curve; Type IV., with slight skewness, has been dealt
with by Porsson in the form of an approximative series.* Type II1. has been given
above, it was first published by me without discussion in ‘ Roy. Soc. Proc.,” vol, 54,
p. 331

We can now turn to the general problem.

(11.) A very simple example will illustrate how a frequency curve, with limited
range and skewness, may be considered to arise. Take n balls in a bag, of
which pn are black, and ¢n are white, and let » balls be drawn and the number
of black be recorded. If »>pn, the range of black balls will lie between o and pn;
the resulting frequency polygon will be skew and limited in range. This polygon,
which is given by a hypergeometrical series, leads us to generalised probability
curves, in the same manner as the symmetrical and skew binomials lead us
to special cases of such curves. If we consider our balls to become fine shot, or
ultimately sand, and suppose each individual grain to have an equal chance of being
drawn, we obtain a continuous curve.t It is not, however, impossible that, could we
measure with sufficient accuracy, many physical as well as biological statistics might
be found to proceed by units, much as in certain types of economic statistics we are
not troubled with fractions of a penny. TFor this reason we shall keep our resulls
in the most general form, and obtain a curve approximating to the hypergeo-
metrical series referred to without any assumptions as to the relative magnitude of
the quantities involved. :

We easily obtain for the series giving the chances of 7, » — 1,7 — 2... 0, black
balls being drawn out of a bag containing pn, black, and ¢n, white, the expression

* « Zur la Probabilité des Jugements,” chapter 3.

+ p pints of red sand and ¢ pints of white sand are put into a vessel, and # pints are withdrawn. We
have if = > p, a perfectly continuous frequency curve for red sand withdrawn ranging between o and p
pints. We are here supposing no “ perfect mixture” of the two kinds of sand, but theoretical equality
of chances for each grain,
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pn(pn — 1)y (pn —2) ... (pn —r + 1)
nmn—1)mn—=2)...(n —r+1)

qn 7 (r —1) gn (gn — 1)
X(1+Ir10n——7’+1 1.2 (pn —r + 1) (pn —r + 2)
»(r—1) (r— 2) gn (gn — 1) (gn — 2) \)
+ 1.2.3 (pn—7'+1)(pn—o‘+2)(pn—')~+3)+&c'

If y, be the s ordinate of this polygon, and we suppose these ordinates plotted up
at distances ¢ apart, we have
Yo _ " —s+ 1 gn—s+1
Y s pn—r+s’
Ty =8 X ¢, Ty = (s + 1) c,

X, =c (s 4+ 3.
Thus +3% ( 2)

Ysa1 — Ys 2 (r+1)@A +gn)—s(n+ 2)

e

Wty xe o+ DA+ gn)—s{20+1)+n(g—p)}+2°

) o+ 1) (1 + qn) — (%ﬂ - é—> (n+2)

[/ i }(‘Hn1 1\ - ¢ X3+L 2
(D 4= (0= 1) REHD nl= 2 (T -y

\

Write
Xy =Xopy — o0 <% L eEDA+ g )

n + 2

and we find with our previous notation

Ay 1 _ - X/s+¢
Az Yo Bi+BXe+B8X%, 7 7 T T (e),
where
Elr+1)(n—r+1) 1A+ qn) (1 + pn)
Bl = (n + 2)3 ’
en (n — 27 — 1
B, = ( ) (=) Bo=—1y

2 (n + 2)?

Now, if we attempt to find the curve which has the same geometrical relation for
the slope as the above hypergeometrical polygon, we see that it will change its type
according to the sign of B8, — 43,8;.

After some reductions we have

VB — 4B}

~ - Vol - e+ Do D=5

MDCCCXCV.—A. 3 A
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Hence /{fB,> — 48,85} will be real or imaginary, according as »/n lies outside or

between the limits
. 1 1°
b a/{(p+5)(e+ )}

If »/n lies outside these limits, then the integral of the right-hand side of
equation (e) is purely logarithmic; if it lies between these limits, the integral is in
part trigonometrical.

Since » must be less than n, it follows that the integral must be trigonometrical if
these limits are respectively = <0 and = >1, ¢, if

(p+ 1/n)(q + L/n) = or > 4,

or p must lie between % 4 ,\/{% <1 + —}{>} .
For example, if n == 100, then, if p lies between ‘6005 and *3995, the integral must
be trigonometrical. If p lies outside these limits, say = ‘7 for example, then the
integral will be logarithmic if 7/n does not lie between ‘04 and ‘96, i.e., if we draw
a small or large proportion of the total contents.

Let us treat the trigonometrical and logarithmic cases separately.

(12)) Case I. By < 48,8,

The curve having the same geometrical slope relation is

1
log ¥ = constant — 28, log (B, + Byx + Bsx?)

By 2 tanl Bt

T 98y 0/ {4B,8; — B} V48,8 — B}

Write @ for # + B,/28;, changing the origin ; further put « for v/ {48,8;,— 8,*}/(28s),

| By
?n for 1./ (28;), and v for B3/ {46185 — By}’
integration,

then we have, 7, being a constant of

Yo — v tan -1 (2/a)

V= Tr e

This frequency curve is asymmetrical and has an unlimited range on either side of
the origin. It corresponds accordingly to the curve required as Type IV.
Here
a=1ley/{4(1 4 pn) (1L + gn) — (n — 27)*},
. n(n— 2r)(p —q) -
T/ + pr) (p + gu) — (n — 2r)*}
m= %(n 4 2).

14
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Special cases. (i.) Suppose r/n = y, and n very large, then

mfat = 2 = o, say
én(pg — (& = %)% 1, 88y,
L—20(p—0)
v/ = =
/ e(pg — (5 =%)? 2

y — yoe - ya? — agﬁ}’

say.
Thus we have

which reduces to the normal type by a change of origin. It is important to notice,
however, that the standard deviation of this normal type

= \/(1/2061) = ¢/ {n (J?Q — (G- x)%)3

and is very dyfferent from the value ¢,/ {(r + 1) pq} = Lc\/ (npqg X 4x), nearly, which
is the usual form. Only when we put p = ¢ = 4 and make y small do they agree.
We thus conclude : That the normal form may fit o chance distribution, but it does
not follow that the standard deviation is of the binomial type generally assumed.

(ii.) Suppose x = 4, corresponding to the withdrawal of one-half of the contents of

a vessel, then
y=19 (1 + 2*/a)™",

ay =3¢/ {(1 + pn) (1 + gn)}.

This is an unlimited and symmetrical frequency curve approaching more and more
nearly to the normal form as we increase n. It has, however, a standard deviation
= ¢4/ (npq), while the normal curve would give Le\/(npg X 2).

(iil.) Suppose p = g = 4, we again reach the form

y =1y (1 + «*/ad)™,

w=tot+ 2 4/ {1= (55}

Make 7 infinite and we have again the normal type, but a standard deviation of
the form 4ey/ {ny (1 — x)}, only approaching the usual value when y is small,

We postpone until we have discussed the remaining types the problem of fitting a
curve of Type IV. to a series of observations.

(18.) Case II.  B,* > 48,8,

Let a; and a, be the roots of B, + B,z + Byx? = 0. Then the curve having the
same geometrical relation for its slope is

where

where

d(ogy) _ .
de Bs (z — @) (x — ay)
1 d
B — o) i (M 1og (2 — @) — aylog (w — o)},

3 A2
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or, if
1y = By (ay — ),
y —_ ylo (m — O&l)-—un.l (.’I'/' —_— (Lg)yﬂ,2
= 1y, (1 — &/a))™ (1 — w/a,)™

by changing constants.
Assuming that y,, », o, and a, can take any sign whatever, we see that there are

three fundamental subtypes of this frequency curve,

(i) y=y9o (1 + afay)) (1 — x/ay)™.

p a 0—a,—— <%

This is an asymmetrical curve with limited range and maximum towards mediocrity.
As a rule va, and va, are fractional and the curve becomes imaginary beyond the
limits ® = — a; and @ = a,.

(i) ¥ =y (way—1)7" (1 — x/a,)

0;<——a,—-—->

a,
Here the ordinate between x = a; and x = «, varies from infinity to zero, and
resembles the frequency curves given by  wealth ” distribution or infant mortality.

(11]) Y =17, (1 — w/czl)‘y“l (1 + m/(l.z)"mz,

a, > () = a, > T

This is an asymmetrical curve with limited range, mediocrity being in a minimum,
The disappearance of mediocrity is not a very uncommon feature of statistics ; the
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“ prevalence of extremes’ may appear not only in meteorological phenomena but in
competitive examinations, where the mediocre have occasionally sufficient wisdom to
refrain from entering. The typeis that of Mr. F. GALTON’s curve of ““consumptivity.”*
The curve contains an interesting number of less fundamental subtypes.
(iv.) Make ay, = o« in (i.),
y = yo (1 + x/a) e
y

e
& —0 = z

This is the limit to the asymmetrical binomial, which has been already referred to
in § 8.
(v.) Make a; = a,,
y =1y (1 — a*fal).

4—-—-——0,[——»0&———-(1'——» x

This is the symmetrical frequency curve of limited range.
(vi) Make » negative in (v.),
. oy .
Y= =y

Yy

@, —— 0« a, z
This is a symmetrical frequency curve, with limited range, and minimum of
mediocrity.
(vii.) Put v = pa, in (v.) and make o, = o,
. Y =Yy e
This is the normal curve.
# ¢ Natural Inheritance,” 1889, p. 174,
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(viil) Put @y, = » in (ii.),
y =y (@a, — 1) e

Y

—a—()° 2
oo

This is an asymmetrical frequency curve, with an ordinate varying from a, to o
along an infinite range.
All eight of the above types are included in the single form

¥ =y, (1 4+ afa)™ (1 — xfa,)",
or
y =y (1 — x/c),

if we give positive, negative, or limiting values to the constants. But to do this we
require to give values to n and # in the expressions for B,, B,, and B;, which are not
easily intelligible, if we rigidly adhere to our example of drawing a definite quantity
of sand from a limited mixture of two kinds of sand. The last type of curve given
is, however, the frequency curve for @ priori probabilities,* and readily admits of a
direct interpretation of the following kind.

Given a line of length /, and suppose » + 1 points placed on it at random ; what is
the frequency with which the point pr from one end and ¢r from the other of the

series of » 4~ 1 points falls on the element 8x of the line ?
The answer is clearly
BT
VIV A

or, we have a frequency curve of the type

y = yoer (1 — x/l)".

We may express the problem a little differently. Take 7 4+ 1 cards and slip them
at random between the pages of a book, the frequency of the page succeeding the

pr + 1% card is given by the above curve.t

* See CrorroN, “ Probability,” § 17, ¢ Encycl. Brit.’
t The important point to be noticed here is that we are dealing with a distribution in which
contributory causes are inter-dependent,
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Until we know very much more definitely than we do at present, how the size of
an organ in any individual, say, depends on the sizes of the same organ in its
ancestors, or what are the nature of the causes which lead to the determination of
prices, or of income, or of mortality at a given age, I do not see that we have any
right to select as our sole frequency curve the normal type

—_ —par
Y=Y

in preference to the far more general
Yy =1, (1 + m/a/l)v(lq (l — m/az)vaz’

which not only includes the former, but supplies the element of skewness which is
undoubtedly present in many statistical frequency distributions. As we may look
upon the former as a limit to a coin-tossing series, so the latter represents a limit to
teetotum-spinning and card-drawing experiments. It is not easy to realise why
nature or economics should, from the standpoint of chance, be more akin to tossing
than to teetotum-spinning or card-dealing. At any rate, from purely utilitarian and
prudent motives, we are justified so long as the analysis is manageable, in using the
more general form. It will always give us a measure of the divergence of particular
statistics from the normal type, and in many cases of skew frequency, it can be used
when it would be the height of absurdity to apply the normal curve at all.
Since Types L., I, IIL, and V. are all represented by the curve

y =y (1 + afo ) (1 — wfay)

and Type IV. by the curve

Y=y
we have only to deal with these two cases in general. We shall refer, in the
course of our work, to special simplifications arising in particular sub-cases. After a
description of the manner in which these generalised probability curves may be fitted
to statistics, we shall indicate, by examples, their practical applications.

(14.) On the Generalised Probability Curve. Type I.

Y=o (1 + xfa )™ (1 — w/ag)™,
Let the range a; + a, =b; let m; = va), my=rva, 2= (a, + x)/(e, + a,),
whence x = — @), 2=0 and 2 =a,, z=1.
Further let
N = Yo (0 + @) ™" /a5,
= ¥y, (m; 4 my)™ * " [y,

thus y =z (1 — 2)™,
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Let a be the area of the curve belween # = — o, and = = a,, ap’, its 2™ moment
round a parallel to the axis of y through « = — o, and ag, its n™ moment round the
centroid vertical.

Then we have

/
0‘,“4/71 = j’ yx'”dx,
0
1
= bn+ l,y’ j‘ 2 +n (l —_ Z)mz CZZ,
0

=b""'9B(m; +n+ 1, my+ 1),

C(my 4+ a4 1)1 (my +1)

—_ bn+1
I'(my + mg + n + 2)

Thus, by the fundamental property of the I' function, we have

a=0byT (m + 1)T (my + 1) /T (m; + my + 2),

;o b(m +1) ;o b (my + 2) (m; + 1)
iy + my + 2° Ba= (my + my + 3) (my + my + 2)’

;o B (my + 3) (my + 2) (my + 1)
ts = (my + my + 4) (my + my + 3) (my + my + 2)°

;o bt (my +4) (my +3) (my +2) (my +1)
Fu (ml + my + 5) (my + my + 4) (my + my + 3) (my + m, + 2)’

From these we easily deduce by the formulee connecting u and w’, if we write for
brevity, m; 4+ 1 =m';, my + 1 = m/y, and m', + m'y = r:

B/ 'y _2Bmfym/y (my — ) __ Bt/ 'y (m/y wy (r — 6) + 20%)
B=5011) BT aeinesn 0 BT ae 4D LD+

Now, ¢, sy, pg and p, are to be found by the methods indicated in Art. 4 from the
polygon of observations, and may be supposed known quantities, when we are dealing
with the fitting of frequency-curve to observations.

Then, if By = py/ps’, and By = ps®/uy®, e = m’ym/y, we have:

4 (=4 (r + 1) _ 3@+ 1) (2 + e (r~6)) _

B= e(r + 2)? B, = e(r+2)(r+ 3)
Thus :
By (7a+2)2_1i_ By (r +2) (v +°) _
Syl e b 3(r+ 1) -,
whence, eliminating 7%/e, we find :
() (:82 :31 -1 )

= 38, —2B,+6
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This gives », then :

7,2
T A+ B+ 2+ 1)

o PO D) B2+ 166+ 1)
- € = M 4 4

€

or

b Vi B0+ 2P+ 16 (r+ DY
2

Since
r=m+m,y, e=m'm,,
m'; and m’, are roots of
m? —rm’ 4+ e = 0.

Thus m; = m’; = 1 and my, = m'y — 1 are determined.

Further, a, + ay = b, a,/a, = m,/m,, and v = m,/a, are all determined.

Lastly :

Yo = 1 My my[(m, 4 my)mt
and
a=by T (m + 1) T (my + 1)/T (m, + my 4 2),
give:
e My T (my + my + 2)

Yo =5 Gy + mgyn+m T (my + 1) T (g +1)

which completes the solution,® if a Table of I' functions is to hand.

Remarks.—It is clear that the solution is unique.

Tt is necessary in order that the solution may be real, that m’; and m’, should be
real or 7?>4e. Hence, if € be negative, there is certainly a solution, because 7 is
always real. The solution forms, however, one of the sub-types referred to in our
Art. 18, (ii) and (iii).

If € be positive, we must have 7%/e — 4 positive, or

B (3 + By
(6 + 351 - 2:82) (432 - 3/31)

> 0.

Now it is easy to prove that for any curve 48, — 38, or 4p,pu, — 3pus® is positive,
for p,u, is always greater than pg®
Thus, we must have
6 + 38, — 28,> O,

or
2pag (B — ) + 3ps® > 0.

* Very often with sufficient accuracy we may take:

yo= 2 (my + mg + 1) o/ (1mq + my) gi’é{ﬁlfriz - 77:; - mI; }
0 b V (2m my mg)

MDCCCXCV.—A. 3 B
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Now it is theoretically impossible to fit a normal curve (u, = 8py®) to a frequency
‘distribution for which p, > 3u,% It is, however, possible to fit this generalised curve
of Type L, although w* be >3u,? provided there is sufficient skewness to render

B’ > 2ty (g — Bpy?).

Hence the first stage in determining the type of curve suitable for a given set of
observations is to ascertain the value of

24t (Bpa” — ) + Bprg™

If this expression be positive, we see that a limited range of variation is a possibility.
Passing from range to skewness we remark that the distance d between the centroid
vertical and the maximum ordinate

= ay — py = oy — bm/y[(m'y + '),
_aym/y — aym’y

m'’y 4+ my

_ b (my — m,)
= (my + my) (my + my + éj

Now it might seem that d/b would form a good measure of skewness, and it would
be so if all curves had a limited range. But, as they have not, it seems to me
better to take as the measure of skewness the ratio of the distance between the
maximum ordinate and the centroid to the length of the swing radius of the curve
about the centroid vertical, ¢.e., the quantity d/,/u,.

In our case we have accordingly,

My — My /\/ "y + Mg+ 3 >
skewness = -,
my + <(7“1 + 1) (imy + 1),

___,}1_}_2
:%\/181,)7__2

in our previous notation.®

Thus range and skewness are determined in Type I.

(15.) A very considerable simplification of the above analysis arises when the range
is given by the conditions of the prob]em itself, e.g., guessing between two given tints.
In this we only require the moments u', and w'y about one end of the range, and the
solution becomes as easy as in the case of fitting a normal curve.

Since b, 'y and g’y are known, let

y; =p1/b and y,= #2/(#1)

* The points of inflexion of the curve are at distances ==+ aa,/(m; + my — 1) on either side of the

maximum ordinate.
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Then
_mh+1
Y2 = my+my + 1

b

y1=m'}/(m' 4+ m'y),

and we have at once

'y = ﬁ(')’i— 1) , m, = (72 — 1)_.@_:'_712 .
Y™ Y N Y2

Then a,/ay = (m'; — 1)/(m'y — 1), and @, + a, = b give a; and a, Finally y, is
given as before by

_a ™M1y T (m, + my + 2) B
Yo="7 (mq + mgym*me ' (my + 1) T (my, + 1)

(16.) A perhaps still more interesting and usual case arises when one end of the
range is given, t.e.,, when p’y, but not b, is known. For example, a curve of distri-
bution of disease with age, the liability to the disease starting with birth. Here we
require to calculate from the observations o p'y, 'y and w5, The solution is as
follows :

Let

| Wl =xo  #y/(Warh) = Xs5
then
— (it Dy ) L4
Tomy(my Fwy+ 1) T 14w
o+ 2) () + ) 12w

37T i (my 4+ my +2) 14 2

if v = 1/m/; and w = 1/(m/, + m').

Solving
o — 1t 2 p = X Xa T XX
. 2 (xs — x3) ’ 2 (Xg — Xs)
Thus,
, 2 (x, — , 2 (x — %) (s — 1) (1 — e
'y = (X — x3) s = 206 =x) (= 1) (1 = x0)

26— X — xxs~ © (L4 x5 = 2x) s — Xo — XoXs)
b= py (m'y + m'y)jm'y = p'y vfu

— 2X3"X2“X9’X3,
to2 (X2 — X3)
determines the range.
Hence, since
. 77?/,-1 :1

o)+ ay=>0, and ay/a, = w1

we have, with the aid of the previous expression for y,, the complete solution of the
problem,

3 B2
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(17.) Generalised probability curve of Type II. Limited Range and Symmetry.
y =1y (1 — @?/a?)",

The solution in this case follows very easily from (14) by putting B, = 0, we have at
once |

6(By—1)
2(m+1):7*:*———“”2’82 )
or
m = 5By =9 Buy— 9®
23— 8y~ 2(3ud — )
b
Since p, = ~2~(—_—i———1~) , and clearly e = 7%/4,
we have b= 20 = 2,/{p, (r + 1)},
or
o = \/ (2,“2:82 \/ (2#2#4)
\/(3 - 182) \/(31% - /*‘4)
Finally

_ e m™ T'(2m 4 2)
Yo =3 @my™ {T (m + 1)}’

24/ =8y T'(2m +2)
T2 V(2w 2 (T (m + D
Shf = T(m+2)

= o T

2papey  PHT (m + 1P ’

3ps® — py T'(m + 15)
Quop, VD (m + 1)

For the normal frequency curve u, = 3pu,?, for a symmetrical point-polygon 3u,®> u,.
Hence, whenever a symmetrical frequency curve differs from the normal curve on the
side of the point-binomial, we can better the normal solution by taking a symmetrical
frequency curve of limited range.

Since

and
mo_ 0,82 - 9 1

at T AuB, 2#7

if 8, = 3, we easily trace the transition from the limited symmetrical curve to the
normal curve with infinite range.

Quite apart from the extremely interesting problem of finding the range, it is clear
that better fits will be obtained for symmetrical distributions by the aid of this ]mmted
range curve for all cases in which 3ug® > .



MR. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 373

(18.) Generalised Probability Curve of the Type III. Range limited in one
durection only.
= (1 + ey

In this case we have no need to determine the value of pu,, and the analysis is much
simplified by the replacement of the B function by a single I' function.
Take z = vy (o + ) and write ya = p, we have

— Yy, e
Yy = v wPe ",
Further, t = — 0,2 =0, x = w0, 2= . Thus we find '

0

o, = [ y(x + a)y de = et [zi’”e‘z dz.
. 0

“a pp,),?nl
Hence
_ Yore? o _el(p+n+1)
&= ol I (p+ 1)’ O = v (p + 1)
whence
“/_19+1 s_(@+D(p+2)
frrd ] = ]
1 v [P v
_(p+DP+2)(p +3) D+ 2)(p+3)(p+4)
Mg =— 73 ? 4 ')’4' :

Or, transposing to the centroid-vertical, we have

_p+1 _2(p+1) _3(p+1)(p+3)
=T M= T g g S T .

Mo 72 - v v

The first two results give us at once

Y= Saflig, P = A e = 1,
whence
o pp+1

2 _2
=" 5B and oy, =

me | 2m ool (p+1)°

a =

RS

This completes the solution of the problem, which is seen to require only the
determination of u, and us.
Remarks.—The distance d of the centroid-vertical from the axis of y or maximum

ordinate d, is given by
: d = p — a= Jpu/s.
Thus
skewness = d/\/py = g/



374 MR. K. PEARSON ON THE MATHEMATICAL: THEORY OF EVOLUTION.

If we transfer the origin to the centroid-vertical we have

2 dpdpg® — 1
— 1 + ,_ﬁh____) e —2p.9% k3
y=9n < L 2wy s

where

_ e /Pm(p DR (o4 1y
ERVICT) TG+ 1) '

It is interesting to note how this skew curve passes into the normal curve when
ps is made vanishingly small, or p = .

By WaLL1S's theorem the limit to y, = a/4/2mp,.

It remains to find the limit of

( 1+ @ >4mm2—1 Sl <1 n 1 © >p = Vo 1a/ Vg
e e TN MG — e
\ 2pa? s, V(2 + 1) 3/ ()

=l +we

L T

u?
.
u=0

Now the limit of {(1 + u)e ="} for u = 0 is easily found to be e = hence

Y = ae” "R/ /(2mp,),
the normal form. '

Returning to the value we have found for p, and eliminating p and y between u,,
s, and p, we find

21y (Bpag® — pa) + 3ps® = 0.

This is the expression (see p. 398) which must be positive in the case of limited
range. It is zero also for the normal curve, because both 8u,® ~ u, and p, vanish.
Hence the more neatly the quantity 2u, (3p,® — p,) + 8p,? approaches to zero, the
more nearly are we able to fit our statistics with a skew frequency-curve having
a range limited in one direction only.

(18 bis).—The skew frequency-curve of Type IIL. deserves especial notice. It is
intermediate between those of Type I. and Type IV., and they differ very little from
it in appearance. Hence, if the reader has once studied the various forms which
Type III. can take as we alter its constants, he will grasp at once the forms taken by
Types L. and IV., by simply considering the range doubly limited or doubly unlimited.
To assist the process of realising Type II1., Plate 9, fig. 5, has been constructed ; it
contains seven sub-types of this species, varying from fig. 1., in which the curve is
asymptotic to the maximum frequency-ordinate to fig. vir, which is practically
identical with the normal curve. Taking y =y, (1 4 @/a)?e¢~7* for the equation
to the curve, we have the following values for the constants p, and 5’ :—
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~

I p= 67 y = 3
11 p == 001 y = 2505
1T, p= 265 Y = ‘363
IV. p= 1-021 Y = ‘7676
V. p= 1 Y = ‘5
VI p= 65625 Y = 43125
VIIL p = 1890 v = 1700

In the diagrams vertical and horizontal scales (y, and &) have been chosen so as
to illustrate best the changes of shape in the curve. The general correspondence of
this series with actual types of frequency curve, as indicated in Plate 7, fig. 1, will at
once strike the reader.

The mean, the median, and the mode or maximum-ordinate are marked by 0b, cc, and
aa, respectively, and as soon as the curves were drawn, a remarkable relation manifested
itself between the position of these three quantities : the median, so long as p was
positive, was seen to be about one-third from the mean towards the maximum.
For p negative and between 0 and — 1, this relation was not true. The distance
between the maximum-ordinate and the mean is, if the equation to the curve be

y=yoa’e ",

equal to 1/y. Now the maximum cannot be accurately determined from observation,
but a fair approximation can be made to the median. Hence the constant y could, if
the above graphical relation were shown to be always true, be determined approxi-
mately as the tnverse of thrice the distance between median and mean.

Now distance of mean from origin = (p + 1) /vy,
and " maximum py  =ply

Hence, supposing distance of median = (p +¢)/vy, we should expect .to find
¢ = 2/3 about.

Equating the integral which gives the area up to the median to half the total
area, we have

@ @
P — 1 Pp=YT
Yo Lﬁ_c are™ da = Ly, L xre™ da,
Y

@ @w
j' zPe" dp = %j 2Pe™ dz.
pte 0

This is the equation for ¢. Unable to solve it generally I gave p a series of integer
values and found in all cases ¢ nearly '67. Its value, however, decreased as p
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increased. I, therefore, assumed ¢ to be really of the form ¢ = ¢; 4+ ¢y/p, and deter-
mining ¢, and ¢, by the method of least squares, found

¢ = 6691 4+ -0094/p.

Probably this is only the beginning of a rapidly converging series in inverse powers
of p, but it would appear to suffice for most practical purposes. It is only true for
p > 1 and does not explain why, when p is positive and fractional, ¢ is still apparently
near §; thus its value for p = 0 has only risen to *6931. We have then the following
fairly simple means of determining roughly the constants of a skew curve of this type:

(1.) Find the mean and the median ; these gives y, approximately.

(2.) Find u, for the mean ; this gives p, since p, = (p + 1)/»%

(3.) Knowing p, correct the value of y by using the above value for ¢, and so obtain
a corrected p.

(4.) Determine 7, from the area.

This method is not very laborious and may be of service in some cases.® It will,
of course, fail for any curves in which p is negative, and must only be applied when
the curve is known to be of Type III. If the beginning of the range is definitely
known, we may save stage (2) above and find p from the distance of the mean from
the start of the range.

(19.) Generalised Probability Curve of Type IV. Range unlimated, but form skew.

Yo , —v tan—1 (x/a)

.[/ = _{1 + &x/a)ﬁ}md

Put # = o tan 0, hence
y =9y, cos™ e,

+ o /2
ap', = f yx' de = y o+l f cos™ =720 sin"f e df ,
—% ~/2
/2 . .
= y,o* *? [ cos” "0 sin” @ e db, if r = 2m — 2,
—n/2

it w2 ) o K&
Y {(n——l)j cos” ~"+20 sin" "% e~ df — Vj

r—-n + 1 —n/2

“cos" 1 gin "0 c“”"dﬁ}

—f2

a

= m {(n - 1) a'lu"ﬂ-—z - V‘LL,H__I}OC,
provided » > n — 1.

* The points of inflexion may also occasionally be found from the observations; they are at distances
=% +/p/y on either side of the maximum ordinate.
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Thus, if we know « and p';, we can find the successive u”s. Now

(2
o= Y, [ cos'd e~ d0,

- /2

'
= yocae‘%””j sin’f ¢+ df,
0

and depends on the integral J”rsirl"ﬁez+ "d@, which 1 propose to write G (r, »). The
. 0

. ™
result above for p, shows us that the more general integral ]’ cos?fsin?@ e **° df can
0

always be expressed in terms of G-functions. Further:

w/2
ap'y = ?/0“2]’ cos” "0 sin 0 e~ d,

— /2

y 0y [ av
— Y [ cos’@ e dl = — ‘7“ o.
— /2

"
Thus we find by the formula of reduction above :

, , @’y

a? :
—— P _—— o (gl € 2
o =7 7«_1)(7A+V>’ g = 74(7._1)(77_2)(07 Z+V)’

, at

X Sy vy o CU ) V2 (61 — 8) 4 v},

Referring to centroid vertical, we have :

@ N 5 o 4ady (7 + v°)
’L’z—rﬂ(a'—-l) (7' +V)’ M3 = P —1)(r — 2)°

_3at (P + 98 {(r +6) (F + ) — 8%}
M= e =) r—2)(r —38)  °

These may be rewritten, if z = 7* 4 »?
__az _ daPz A/ (2 — 1%)
Fe=0u=1)" Fs= T —1)(r—2)

__ Sa%z{(r + 6)z — 8%}
b= o e =2)(r —38)"

As before, putting 8, = ps*/p,® and By, = m,/py’, we have

By(r—2 o7
- 21(¢~—1) =8 -8,
B, (r — 2) (9'-—3)__ ro
S -1 —rTo—8y

MDCCCXCV.—A. 3¢
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Adding and dividing out by » — 2, we have
_ 6B =B -1

28, — 38, — 6’

hence

is known. Further

18 known, whence

is given.*  Finally

and
Pk

Yo=
ccj sin” 6 ¢ dO
0

completely determine the problem.

Remarks. The solution is clearly unique.

(i.) To determine the skewness we must find the position of the ordinate for which
dy/dx = 0; this is 2y = — va/(2m) = — va/(r+2).

But

/ N
d=—pita="7 T 42 r(r42)
Hence
skewness = d/\/p,
' : r—2

_ <”" - 1.-> =By (W p370)

T4 2 ” 4+
(ii.) We further notice that
4By — 3By

r—1= "2 "L .
2By — 3By — 6

Hence, since 48, is always > 38, (see p. 369), it tollows, since r > 1, that we must

have
232"'3:81"'6>0’

or
21y (3pe® — py) + 3ps® <0

* Whether we give v the — or + sign will depend upon the sign of u, in the actual statistics.
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Thus this expression is again critical for the class of curve with which we are
dealing. We may say that a skew frequency curve will have limited range, range
limited in one direction only, or unlimited range according as

23 (Bpe® — p) + 3ps®

is greater than, equal to or less than zero. Thus the calculation of this expression is
the first step towards the classification of a frequency curve given by observation.
(iii.) It is noteworthy that the values we have obtained for 7, z, &, v and y, will be
real and possible if » > 1. On the other hand we have required in our work that »
should be > 3. I propose now to return to this point. So long as » > 1 the values
of both p'; and p, will be finite, but the values of u’s and p’, and consequently of ug
and p, will be infinite if » be < 8. That is to say, the third and fourth moments
of the curve about the centroid vertical become infinite. This is quite conceivable
from the geometrical standpoint, and various interesting questions, of purely
theoretical value however, arise according as » > 1 and < 2, 7.e., u, and py are both
infinite, or > 2 and < 3, s.e., p, alone is infinite. The solution we have given fails
in these cases. We should obtain, however, finite relations between the four constants
of the equation to the curve by taking the first and second moments ep”, and au”,
round the axis of «; we find in this case
i/

2
COSQT+20 e wo de,
—m/2

"o
op ) =

20j=

Yo' & [

/2
?/03 a COS37‘+4<6 6—31'0 da,
—m/2

[

144 —_—
OCI,L 9 =
or,

ph=Ly,e ¥ G (2r + 2, 20)/G (7, v),
py = %yl e G (87 -+ 4, 3v)/G (7, v).
These results together with

2 (2 2
=G = e G ()
are theoretically sufficient to determine the four constants 7, v, y, and a. Practically
they would hardly be of service without very elaborate tables of the G functions.

As a matter of fact, we are very unlikely in dealing with actual statistics to meet
with cases in which ug and u, become infinite, because neither the range of observa-
tions, nor the size of the groups observed at great distances from the origin can be
infinite. With finite values of pg and p,, it is, however, easy to see that we always
obtain from our solution on page 3877 a value of >3, so that the solution is self-
consistent.

3 ¢ 2
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(iv.) It remains to say a few words about the integral
G (r,v) = f "sin'd ¢ do.
0
Provided » > 1, we find a formula of reduction

Gl ="0"D G —2).

Thus the value of the integral from » = 0 to » = 2 only will be required for diverse
values of ». The integral does not yet appear to have been studied at length or
tabulated. Dr. A: R. Forsyra™® has kindly answered my inquiry for a fairly easy
method of reducing G (7, ») for purposes of calculation, by sending me the formula

2w 11 (r)

G(rv)=gx (Lr — Lvi) 1L (37 + Lvi)’

where II is GAUss’s function such that
I(n)=T (n+ 1).
Taking as definition of II that

1.2...n "
F+1)(+2)...¢¢+n)

II (z) = limit of

when 7 is infinite, we can reduce the above expression to the form

9=varetm T (r + 1)
G(r’ V) = n=0 y‘l + 712
Product . <1 + s dtr /n>>

Here, since r can always be supposed to lie between 0 and 2, when » is small a few
terms of the product will generally suffice for the calculation of G (r, ») to the degree
of accuracy required in statistical practice.

On the other hand when 7 is large, i.e., generally in cases of slight skewness, I find
if tan ¢ = v/r

— o v "ocostd _ 4oy
1T (3 = i) T (b + i) = 70 e "<700§T;,>“ 2 grians

very nearly.
Hence

cos?d 1 _ ¢r tan ¢

o \//7 e 8r 12
4 Yo =0 N o (cos )+l

* “ Tiyaluation of two Definite Integrals,” ¢ Quarterly Journal of Mathematics,” Jannary, 1895.

very nearly.
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(20.) We have now considered methods for fully investigating whether a given
system of measurements has a limited range, and for ascertaining the degree of
skewness of the system.

Analytically, our work may be expressed as follows :—

The slope of the normal curve is given by a relation of the form

L dy x

y do e

The slope of the curve correlated to the skew binomial as the normal curve to the
symmetrical binomial is given by a relation of the form

1l dy  —w

y do o+ op
Finally, the slope of the curve correlated to the hypergeometrical series (which
expresses a probability distribution in which the “ contributory causes” are not

independent, and not equally likely to give equal deviations in excess and defect) as
the above curves to their respective binomials is given by a relation of the form

1 dy —

y do o + o + cga?

This latter curve comprises the other two as special cases, and so far as my
investigations have yet gone practically covers all homogencous statistics that I have
had to deal with. Something still more general may be conceivable, but I have
hitherto found no necessity for it.

To demonstrate its fitness and the importance of these generalised frequency
distributions for various problems in physics, economics, and biology, I have devoted
the remainder of this paper to the consideration of special cases of actual statistics.

Parr IL.—StArI1sTICAL EXAMPLES.

(21.) QuerELET, who often foreshadowed statistical advances without perceiving
the method by which they might be scientifically dealt with, has treated of the subject
of limits in Lettre XXII of his “ Lettres sur la Théorie des Probabilités” (1846). He
seems to have been conscious that certain variations in excess or defect might
biologically or physically be impossible, and he accordingly introduces the terms Limites
extraordinaires en plus et en moins to mark the range of possible variation. He
makes no attempt to show how this range may be found from a given set of statistics.

“ Lorsqu’on suppose le nombre des observations infini, ou peut porter les écarts & des
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distances également infinies de la moyenne, et trouver toujours des probabilités qui y
correspondent. Cette conception mathématique ne peut évidemment s’accorder avec
ce qui est dans la nature. . . . Les limites extraordinaires au deld desquelles se
trouvent les monstruosités, me semblent plus difficiles & fixer.”

Indeed QUETELET’S attempt to fix these Jimits in the case of the height of human
beings at 2801 and ‘433 metres is purely empirical, and scientifically worthless.

I prepose in this the first section of the practical part of this paper to consider how
far the theory we have developed in the first part, enables us to find the range in
various groups of physical and biological phenomena.

Example 1.  The Range of the Barometer.—The following results for the curve of
barometric heights are given on p. 352.

o= 1716 By = 10714
o = 1595 My = 326°34.

We have accordingly :

that is, this expression is positive, and we have a limited range.
We have further : 8, = *24401, B, = 3'17391L.
Hence, determining the constants in the manner described in §14, we have :

r = 301382 e = 1507954
b = 4361016,
my= 58352 a, = 82688
iy = 228030 0y = 35°3414.

Next to find d, giving the distances of the centroid from the origin, or the distance
on barometer between mean and maximum, we have by p. 370

d = — *8983.

Thus
Range of barometer above mean = 91671

» » below ,, == 34-4431.

Now, in the scale upon which our curve is drawn in Plate 10, fig. 6, each centimetre
equals 1% inch, and the mean barometer in Dr. VENN'S results equals about 297°931.
Thus the mazimum possible = 30”85 and the minimum possible = 26”49 ; the range
of the barometer being about 4”7'86. Now, the highest barometer in Dr. VENN’s record
= 30”7, and the lowest 28”7 ; it is clear, therefore, that we reach much nearer in
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practice to the upper than to the lower limit of the barometric range.* The result
here obtained for the barometric range is of course only tentative and approximate.
Far larger statistics must be dealt with, and for a greater variety of places, we shall
then be better able to judge how far the range, as ascertained from Dr. VENN'S
statistics, is local, or if general, what modification or correction may be required.
Calculating the value of #,, we find for the curve of barometric heights :

y = 21642 (1 4 x/8°2688)** (1 — /358414 )20,

This curve 1s traced on Plate 10, fig. 6. It will be seen to be extremely close to the
observations.

Although the expression 2u, (3uy® — py) + 3us® is not zero, it is interesting to see
with what closeness the skew curve which is the limit to a point binomial can be
fitted to the barometric observations. This is the curve of Type TIL. Calculating
its constants by aid of § 18, we find

y = 22 (1 4 x/12:10638)1% =121,

while d, the distance between the maximum ordinate and the centroid-vertical,
= '7864. This gives a maximum possible height of the barometer of 31722 instead
of 30785, there being of course no lower limit. The curve is shown in Plate 10,
fig. 6, and will be seen to give a very close correspondence with the observations.
The “skewness” of barometric results as given by the curve with limited range
= '8983/3'184 = 2821, and as given by the curve of Type IIl. = -7864/3'184
= '2470,—no very great difference.

The areal deviations of the two curves are almost exactly the same, being about
7'1 sq. centims. or percentage error of 4'1. The normal curve is also drawn on
the same plate. It diverges widely from the observations, the areal deviation
=26 sq. centims. or the percentage error 15°1,—about 87 times as great as in the
case of either skew probability curve.

Till a wider range of barometric observations have been analysed, it may be wiser
not to draw too definite conclusions from the above results, contenting ourselves with
the remark that the new skew curve gives far better results than the old normal
curve of errors.

% 1 am unaware if Dr. VExN’s results are reduced to sea-level. The lowest recorded barometric
height for the British Isles reduced to sea-level is 27”333 (at Ochertyre, Perthshire, January 26, 1884)
and the highest (at Roche’s Point, Cork, February 20,1882) is 30"93. A statement that the barometer
stood at 31'046 at Gordon Castle, in January, 1820, has hardly sufficient evidence. Supposing Dr. VEXN’s
statistics to be unreduced Cambridge statistics, the expression theoretically found for the barometric
range seems to be on the whole satisfactory. I have at present in hand other series of barometric
heights.
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Example II. Professor WELDON's Crab Measurements No. 4. The details of
these are given in ¢ Phil. Trans.,” vol. 185, p. 96.

We have
o = 999, g = 7°6759, g = 34751,

p, = 1843039, B, = ‘0267022, B, = 3'12807.
In this case

20y (Bpe® = ) + Bps® = po® (6 + 38, — 2B,) = — py® X 1760334,
and is accordingly negative. In Hxample I. of the barometric heights we had

Qg (Bpg” — ) + 3pg® = iy’ X 38421,

Since, in the latter case, this value was sufficiently small to give a good curve of
Type III., we may expect the like result in this case. There is, indeed, a slight but
sensible skewness even in this the most symmetrical of all Professor WELDON’S crab
measurements, and the skew curve of Type IIIL is really a better fit than the
normal curve. But clearly since the critical function is megative, we are dealing
properly with a case of a curve of Type IV. The ratio of the organs dealt with in
No. 4 series of measurements does not give a *limited range” of variation. Pro-
ceeding by the method indicated in § 19, we find for the constants

r="71624, m== 36812, v = 257616,
o = 21909, W= — 78802,
d= 21407, Skewness = 077267, yo= 175509.%

Thus the equation to the curve is :
e—-25'7616tan'1(x/21'909)

[1 + 2%/(21:909)2 56512

y = 175509

To trace the curve, take :
x = 21909 tan 0,
y —_ 1.75509 COS73'624 0 6—25'76160.

If we take a skew curve of Type IIL, we find for its equation :

y = 14422 (1 + 2/33:683)1*38 ¢~ +417%,

where, for the centroid
d = 226364,

and the skewness
== *081704.

For the normal curve we have:
y = 14385 @~ PIRTT05)

* was calculated by aid of the approximate formula on p. 380.
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All three curves are drawn in fig. 4 of Plate 8. It will be seen that they are all
very close to the observations. So far as skewness is concerned, curves of Types I1I. and
IV. give practically the same result (‘082 and 077) ; in both cases the skewness is
small. The areal deviations are in the three cases respectively : 4'4 sq. centims.,
59 sq. centims., and 6'7 sq. centims., or we have mean percentage errors in frequency
of 4'4, 5°9, and 6°7 nearly ; the percentage error for the closest point binomial is 10°5.
We thus conclude that even in a case which has been selected as the most typically
symmetrical series of measurements out of a very considerable set of careful statistics,
the generalised probability curve is one-third as good again as the normal curve,
while the special case of that generalised probability curve—which is not the most
appropriate to our observations—is itself distinctly better than the normal curve.
This result has been confirmed by a considerable application of these generalised
curves ; in good cases of normal curve fitting, the generalised curves are always
sensibly better ; in cases where the normal curve is almost useless, as in the case of
barometric observations, the new curve, if of the appropriate type, will represent with
a 4 to 5 per cent. mean accuracy many observations not yet reduced to statistical
theory. It is, perhaps, unnecessary to repeat that this mean percentage is much less
than the average of what has been allowed to pass muster hitherto in both physical
and biological measurements. Professor EncEworTH’S view* thus seems untenable ; a
curve with a comparatively easy theory of its constants has been found which excels
the accuracy of the hitherto adopted normal curve. And this for the simple reason
that it would pass into the normal curve, if that curve were itself the best fit.

28. Example III.—The following statistics of height for 25,878 recruits in the
United States Army, are given by J. H. BAXTER, ¢ Medical Statistics of the
Provost-Marshal-General’s Bureau,” vol. 1, Plate 80, 1875.

78-77 2 64-63 1947
77-76 6 63-62 1237
76-75 9 6261 526
75-74 42 61-60 50
74-73 118 60--59 15
73-72 343 59-58 10
72-71 680 58-57 6
71-70 1485 57-56

70-69 2075 56-55 3
69-68 3133 55-54 1
68-67 3631 54-53 2
67~66 4054 53-52 1
66-65 3475 52-51 1
65-64 3019

* ¢Phil. Mag.,” vol. 24, p. 334, 1887.
MDCCCXCV.—A. 3D
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I find:
Mean height = 6772989,

Standard deviation = 2"°5848.
Maximum ordinate, 3994-04.

This gives a very close-fitting normal curve.
The data for a generalised curve are

po = 668122 B, = 005769
py= — 131168 B, = 3-024801.
By = 135°02324
Thus,
928, — 8B, — 6 = 032295,

and being positive, we see the curve belongs to Type IV. There is, thus, exactly as in
the previous examples of crab measurements, no range of a limited character for these
statistics of height.* For a true normal curve, 8, B, ought to be 0 and 3 respec-
tively ; we have therefore a still closer approach (3:025) than in the case of the crabs
(3:128) to normality. In this case » is about 400, and on any rveasonable scale, there
is no sensible difference between the normal and the generalised curves. The skew-
ness is very slight, = 038 about, or about half its value in the case of the crabs.

24. Ezample 1V.—Height of 2192 St. Louis School Girls, aged 8.—The following
statistics are given by W. T. PorrERr, “ The Growth of St. Louis Children,” ¢ Trans.
of Acad. of Sci. of St. Louis,” vol. 6, p. 279, 1894.

Heights at intervals of Number Heights at intervals of Number
2 centims. : ’ 2 centims. mber.
centims, centims.

141 and 142 1 119 and 120 342
139 ,, 140 0 ! 117 ,, 118 321
137 ,, 138 1 115 ,, 116 297
135 ,, 136 5 113 ,, 114 222
133 ,, 134 10 111, 112 137
131 ,, 132 21 109 ,, 110 84
129 ,, 130 28 107 ,, 108 42
127, 128 79 105 ,, 106 27
125 ,, 126 138 103 ,, 104 8
123 ,, 124 183 101 ,, 102 2
121 ,, 122 243 99 ,, 100 1

The following are the calculated values of the constantst :—

* If, notwithstanding, we take a curve of Type ILL., we find the range limited on the ¢dwarf’ side
at about *7645".

+ The unit of all these constants = 2 centims., except in the case of the mean height. The
standard deviation = 555244: centims., which gives a probable deviation of 3745 centims. The mean



MR, K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 387

g = 7°70739, - Mean height = 118271 centims.,
py = — 238064, Standard deviation = 277622,
py = 192717419, 1, for normal curve = 31499,

B, = 10123784, B, = 3-235045.

Thus 28, — 38, — 6 is positive, and the curve is again of Type I'V.

We have

d= 135606, Skewness = 04885,
7 = 30:8023, m = 164011,
v = 4'56967, a = 149917,

Yy = 235328,
or, for the equation to the curve :—

x = 149917 tan 6,

y = 235°323 COS3Y8023() (4569670

the axis of 2 being positive towards dwarfs and the origin 22241 on the positive side
of the centroid-vertical.

The maximum ordinate = 32418 and occurs at x = — 2:0884.

The curve of Type IV., together with the normal curve, is drawn (Plate 10, fig. 7).

If we attempt to fit a curve of Type III., we find p about 32214, and the range
limited on the dwarf side at about 99812 centims. from the mean, or at a height of
about 185 centims. The largeness of p causes this curve to coincide with the normal
curve to the scale of our diagram. The areal deviations are for the curve of Type IV.
and for the normal curve 61 and 8'3 centims., giving percentage mean errors of 556
and 7'66 in the ordinates respectively. The advantage is again on the side of the
generalised curve. It will be seen at once that the normal curve by no means well
represents the number of girls of giant height. The theoretical probability that
these giants should occur is small, and their actual redundancy over the numbers
indicated by the normal curve suggests some peculiarity in this direction ; it is fully
met by the curve of Type IV. The asymmetry of the curves given by anthropo-
metrical measurements on children has been noted both by Bowprrca® and PorTER,t
but in their published papers, to which T have had access, they do not give their
raw material, only the ogive curve arising from GarrtoN’s method of percentiles.
Unfortunately, theoretical evaluation of the skewness of anthropometric statistics
can only be applied or verified when we have raw material, and not integral frequency

height and probable deviation, as given by Mr. PorTER, are 11836 and 3698. The latter is obtained
from the mean deviation, but I do not know how the former is to be accounted for.

* ¢ Growth of Children, studied by Ganrox’s Method of Percentiles.” Boston, 1891, p. 496.

t ‘Growth of St. Louis Children.” St. Louis, 1894, p. 299.

3 D2



388 MR. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION.

curves, the integral of the frequency in all suggested forms of the frequency curve
being not expressible in terms of undetermined constants. Valuable as is the
method of percentiles for representing popularly the numerical facts of anthro-
pometry, it is to be regretted that percentile statistics are replacing the raw material
in so many publications. The raw material of Professor WELDON’S crab-measure-
ments and Bowprrca and PorTER’S child-measurements ought to be preserved and
circulated in print, as a means of developing and testing statistical theory.

(25.) Example V. Length-Breadth Index of 900 Bavarian Skulls.—The following
statistics are taken from Tables L-VL., VIII.-X,, inclusive, of J. RANKE's ¢ Beitriige
zur physischen Anthropologie der Baiern, Miinchen, 1883.” They include all the
material, which may be treated as typically ¢ Alt-Baierisch,” both male and female
skulls.

Index. Frequency. Index. Frequency. Index. Frequency.
70 1 80 715 90 10
71 1 81 82 91 8
72 0 82 116 92 3
73 2-5% 83 98 93 15
74 15 84 107 94 2
75 35 85 82 95 15
76 125 86 74 96 0
77 17 87 58 97 0
78 37 88 3405 98 1
79 55 89 19 99 0

We find, as before,
Position of centroid-vertical, 83:07111,

o= 3468, Yo = 103532 (for normal curve),
= 12027166, B, = ‘0078995,

ps = 8707179, B, = 3'649558,

gy = 52791696, = 1242734,

d= 111388, Skewness = ‘0321186,

m = 721367, v ='853,771, a = 1169583, Yo = 107°4706.

Thus we see that the curve is again of Type 1V. This result seems of considerable
significance, but it requires, of course, wider examination of cases than I have yet
been able to make. But, so far as I have gone, in both anthropometric and
biological statistics, whether relative or absolute measurements of organs, the
frequency curves all deviate from the normal curve—however slight the deviation—
in the direction of Type IV. That is to say, the distribution of chances upon which
the frequency of variation of an organ depends, appears to resemble the drawing of a

#* Indices such as 735 have been divided between 73 and 74 groups.
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limited amount from a limited mixture. So far as this goes, it is evidence against
the usual hypothesis that in biological matters the chances of deviations on either
side of the mean are equal, and the “contributory causes” independent and
indefinitely great in number. Thus we appear in biological statistics to be dealing
with a chance system corresponding, not to a binomial, but to a hypergeometrical
series, such as that discussed in § 11.

If it be remarked that Type IV. dismisses at once the problem of range from
biological investigations, we must notice that, while this is theoretically correct so
long as we are dealing with the continuous curve by which we replace the hyper-
geometrical series, it is not true the moment we fall back from the curve on the point
series (see p. 361). If the » of that page (or the gn) be an integer, the series is limited
in range. It seems very possible that discreteness, rather than continuity, is charac-
teristic of the ultimate elements of variation ; in other words, if we replaced the curve
by a discrete series of points, we should find a limited range. It is the analytical
transition from this series to a closely fitting curve which replaces the limited by an
unlimited range. Exactly the same transition occurs when we pass from the sym-
metrical point binomial to the normal curve. Thus, while Type I. marks an absolutely
limited range, the occurrence of Type IV. does not necessarily mean that the range
is actually unlimited.*

For the equation to the curve we have

x= 1169583 tan 0,
y = 107°4706 cos 14:497349 G—'8537719’

the origin being at a distance '803515 on the positive side of the centroid vertical.
The normal curve as well as the curve of Type IV. are shown (Plate 11, fig. 8). The
result in both cases is quite good for this type of statistics—a.e., the skulls came from
eight different districts and include 100 female skulls. 'With the planimeter the areal
deviation in both cases = 6'8 square centims., giving in either case an average per-
centage error of 7:56. That the generalised curve does not in this case give a
decidedly better result than the normal curve I attribute to the heterogeneity of the
material. It clearly accounts better for the extreme dolichocephalic and brachy-
cephalic skulls than the normal curve. The same 900 skulls have been fitted with a
normal curve by STIEDA,' but neither the constants of his normal distribution nor

* 1 reserve for the present the fitting of hypergeometrical point series to statistical results. The
discussion is related to curves of Type IV., as the fitting of point binomials to curves of Type I1I. Tt
will, I think, throw considerable light on the nature of chance in the field of biological variation,
especially with regard to limitation of the material to be drawn upon, to which I referred above, and
which, I believe, finds confirmation in skull statistics.

t “Ueber die Anwendung der Wahrscheinlichkeitsrechnung in der anthropologischen Statistik,”
¢ Archiv tiiv Anthropologie,” Bd. 14. Braunschweig, 1882.
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his plotting of RANKE'S observations agree with mine. He has added together under
83, for example, all indices from 83 to 83'9. Thus, for the indices &1, 82, 83, 84 he
gives the frequencies 106, 92, 111, 99, while I find 82, 116, 98, 107, a very sensible
difference.® StrEDA’S method can introduce very sensible errors. In this particular
case it transfers the maximum frequency of observation from 82 to 84.

The last four examples have dealt with cases where the statistician has hitherto
been content to assume symmetry. They have been given to indicate (i.) an
apparently uniform trend in biological statistics of variation, and (ii.) the improved
fitting of theory to practice which arises from using the generalised curve. I now
pass to cases of obvious skewness, where the statistician has hitherto had no satis-
factory theory.

(26.) Example VI. Distribution of 8689 Cuses of Finteric Fever Recewved into the
Metropolitan Asylums Board Fever Hospritals, 1871-93.

Age. Number of cases. Age. Number of cases.
Under 5 266 35-40 299
5-10 1143 40-45 163
10-15 2019 45-50 98
15-20 1955 50-55 40
20-25 1319 55-60 14
25-30 857 Above 60 13
30-35 503

I considered that the 13 cases ¢ above 60 ” might be distributed as follows: 60-65,
8; 65-70, 4; 70-75, 1.
Taking five years as the unit I found

po = 4°070554,  pg = 7598196,  m, = 69379605,

The centroid-vertical is at 189691 years, .., 29382 unit from 15-20.

Thus 2py (8py® — py) + 8ps® = 1305102, or the curve is of Type I.  Since, however,
3B, — 2B, + 6 = 1935 is small, a curve of Type I11. will also be a good fit.

We have for the other constants

”
€
b

my

a,
Yo

I

i

I

792:28642,
25978912,
77-28312,
279291,
307801,
1890°83.

d

Skewness

My =

dy -

|

98643,
488922,

67:49351,
7420511,

# T class as 83 all from 826 to 834, dividing 82'5 between 82 and 83 evenly, and 835 between 83
and 84 evenly. Thus in the Table above certain frequencies will be found with such values as 125 or
71+5 skulls.
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Thus we have for the curve of Type I.

. z__\vn 2 \)6’7'49351
y = 189018 <1 + 3-07801) < ~ 7420511/ ’
where the centroid is '98643 unit from axis of y.

The curve of Type IIL is

= 1894'57 (1 + __z__\Yoreen e~ 10714532
y= " T 3428094 :

The centroid is in this case *933313 unit on the positive side of the origin and the
skewness = *462594. :

It will be noticed that the curve of Type I. extends *2706 unit or 1'353 years,
and the curve of Type IIL. *5676 unit or 2'838 years before birth. In both cases
the chances of an “antenatal” death from enteric fever are very, very small. Curve
of Type L is in this respect better than the curve of Type IlI. The latter curve
gives no maximum limit, the former a limit of about 77 units or 385 years. In both
cases, however, the chances of a case of enteric fever with the subject over 100 years
are vanishingly small. These statistics of enteric fever thus set a maximum limit to
the duration of life, but it is a limit so high as to have little suggestiveness.

In order to see what is the nature of the difference made, when we suppose the
liabiiity to enteric fever to commence with birth, I will treat these statistics as a
case falling under § 16.

If then p/), p'y, and py be the first three moments about the vertical through
0 years we have

W, = 379382, wy= 1846362,
W'y = 10853175,

X, = 1'282813, X; = 1549399,
w = 030435, v = 321856,
my = 214296, my = 2871414,
b = 401206, y, = 187339,

a, = 278629, a, = 87:33431.

whence we have for the curve

2 2'14206 x 2871414
y = 187339 (1 + m) <1 - 37-33431> '

Here the duration of life is 200 years about, and the maximum incidence of the
disease is at 1393 years.

Lastly for the normal curve, we have the constants o = 201756 units = 10°0878
years and v, == 1718°12.

All the above four curves are drawn, Plate 12, fig. 9.
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We see at once that the normal curve is perfectly incapable of expressing statistical
results like these. It gives an average error in the ordinate of 25°8 per cent. and no
less than 260 antenatal deaths !

For the remaining three curves we have the following results :—

Percentage error

in ordinato. Antenatal cases.

Curve of Type I. (closest fit) . . . 575 3
’ ” (starting at birth) . 73 0
Curve of Type IIT. . . . . . . . 598 9

The percentage errors here are well within those usually passed by statisticians.
If they are slightly larger than what we have found in previous cases the source of
the error is not far to seek. We have combined both male and female cases, but the
distributions of enteric fever for both sexes are not the same. The fever curves for
either sex differ in some cases markedly, although less for enteric fever than for
diphtheria, for example. We have thus, in reality, a compound curve. I have found
for about 700 male cases only a percentage error of about 5.%

Another point needing notice is the question of antenatal cases, which may at first
strike the reader as absurd. The closest fitting curve of Type I. runs, as we have seen,
1'35 years about before birth, and gives three antenatal cases. Three antenatal cases
(or, indeed, 9 in the case of the curve of Type IIL) is a very small percentage of
8689 cases, and not of importance from the statistician’s standpoint. But the fact
that a curve starting before birth gives a better fit than one starting at birth, is
significant, and there is every probability that a curve starting from about — ‘75 year
would give a still less percentage error than one from 135 year or from birth.t

In dealing with mortality curves for infancy I have found it impossible to get good
fitting theoretical curves, without carrying these curves backward to a limit of
something less than a year. The “ theoretical ” statistics thus obtained of antenatal
deaths seem to be fairly well in accordance with the actual statistics of maternity
charities. In vital statistics therefore we must be prepared in most diseases for small
percentages of antenatal cases and antenatal deaths, and it is just possible that theory
in this matter will be able to indicate lines of profitable inquiry to the medical
statistician.

(27.) Example VII—As an example of the method of Section 15, I take the
following statistics of guessing a tint. Nine mixtures of black and white were taken,

# I propose on another occasion to deal with the age distribution of fever cases. My object at present
is only to give typical illustrations of the method of calculating skew curves.

+ In fact the case of a pregnant woman with enteric fever is to be considered as a case also of
antenatal enteric fever.
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so as to get a series of tints in arithmetical progression 1, 2, 8, 4, 5, 6, 7, 8, and 9.
These tints were then placed in non-consecutive order, and 231 persons asked to guess
a tint by affixed letters lying between 1 and 9. The results were as follows :—

e 1 Frequency of . Frequency of
Lint. ! g'uess:y ‘ Tint. guess.y
! |
1 | 0 | 6 54
2 8 | 7 94
3 7 ! 8 40
4 | 6 } 9 0
| 5 ’ 22 ,
|

Now, obviously, the number of tints and the number of persons guessing were far
too limited to draw any definite conclusions as to the distribution of tint guesses.®
I propose here merely to use these statistics to illustrate the calculation of a skew
frequency curve with a given limited range. I do not wish to propound any theory
of tint guessing, nor to assert that these guesses actually distribute themselves
according to the curves dealt with in this paper.

Calculating the moments about the centroid in the usual manner, we have

Mg = 2'1417
b= — 370067 Centroid lies at a distance of 5376624 units
#5 = 196255 from the tint 1.

o =

We easily find 2p, (3uy> — py) + 8ps® = 15°963385, or the observations fall into a
curve of Type L, that is to say, have a lemited range.

‘We obtain
B, = 139407, B, = 427862,
» = 6°95847, € = 6°443186.
hence the range
b= 11'31768.

Further

m; = 4858705, my= 099765,

a, = 1108997, ay = 22769,

d= 1561012, Skewness = 1'06666.

Thus the range of the theoretical curve runs from a point 4:15233 units before
tint 1, and concludes at a point ‘734674 unit before tint 9.  The curve is, however,

* I hope later to deal with the subject of tint guesses falling within a limited range, as my material
increases in bulk. I would only note here, that the geometric al mean frequency curve does not seem to
give results according well with experiment.

MDCCCXCV.-—A. 3L
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practically insensible before tint 1. Considering the roughness of the experimental
method, the obtaining an actual range of about 11 instead of 8, and its covering very
nearly the range of 8 must be held to be fairly encouraging for the method. T shall
accordingly calculate the constants of the curve on the assumption that the range lies
between Tints 1 and 9, using the method of § 15.

‘We find
py = 2623376, uy = 9023803,
y = 327922, y,= 429971
Whence
my = 2°75412, m; = 83172,
= 6144435, a, = 1:855565,
and

y, = 59°5996.

Thus we may take for the curve

o \2T5412 s \"S3172
y =56 <1 T §1a4i3 5) <1 1855565) '

The curve is figured, Plate 11, fig. 10, with the first “ smooth” of the observations.
It will be seen to give the general character of the distribution,but much more elaborate
experiments would be required before any statement could be made as to whether
frequency of tint guesses really does follow a curve with limited range of Type I.
On the same plate the frequency of 128 guesses distributed over 18 tints is given,
the approximation to a curve of Type I. is fairly close considering the paucity of
guesses.

(28.) Example VIII.—The question may be raised, how are we to discriminate be-
tween a true curve of skew type and a compound curve, supposing we have no reason
to suspect our statistics ¢ prior: of mixture. I have at present been unable to find any
general condition among the moments, which would be impossible for a skew curve
and possible for a compound, and so indicate compoundedness. I do not, however,
despair of one being found. It is a fact, possibly of some significance, that the best
fitting skew curve to several compound curves that I have tested is a curve of
Type I, and not that of Type IV. which appears to be the more usual type in
biological statistics. Taking, as an example, the statistics for the “foreheads” of Naples
crabs due to Professor WELDON, and resolved into their components in my memoir,
¢ Phil. Trans.” A, vol. 185, p. 85, ¢t seq., I find for the best fitting skew curve the
equation

14777264 @ 40469
7/_832526(1+ ( > ,

40° 9‘)96> STt

where the origin 18 at 14274 horizontal units from the centroid-vertical in the
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positive sense of the horizontal scale. If, now, we place this skew curve and the
compound curve of Plate 1, ¢ Phil. Trans.,” vol. 185, on top of the observations (see
Plate 13, fig. 11), we see at once how much better is the fit of the compound curve.
The skew curve gives a mean percentage error in the ordinates of 104, the compound
curve of only 7'4. The determination of the best skew curve, when the compound
curve is known, is easy, for all its details are already practically calculated.

A criterion of whether a compound or skew curve is to be sought for ab wnitio,
would be, however, of great value.

(29.) Example I1X.—A more markedly skew curve than any we have yet dealt
with is that giving the frequency of divorce with duration of marriage. 1 take my
statistics from a paper by Dr. W. F. Wrrrcox, entitled “The Divorce Problem,
a Study in Statistics” (‘Studies in History, Economics, and Public Law,” Columbia

College, vol. 1, p. 25).

They are as follows :—

| i
Duration of marriage | . Duration of marriage ; N .
in years. g - Divorees (1882-6). in years, ! Divorces (1882-6).
1 5314 12 f: 4089
2 7483 13 | 3563
3 , 9426 14 3144
4 9671 15 4 2931
5 f 9014 16 l 2791
6 ‘ 8274 17 ; 2917
7 7021 i 18 { 1877
8 6093 i 19 g 1577
9 5305 20 g 1459
10 ‘, 5002 21 and over | 9401
11 : 4384 |

Total number of divorces granted, 109,966.

Now these statistics suffer from a defect common to many of the class—the want
of careful enumeration of the frequencies near the beginning and end of the series.
It cannot be too often insisted upon that carveful details of the frequencies in the
start and finish of the distribution are requisite if we are to fit skew distributions
with their appropriate skew curves. How, in this case for example, are we to
distribute the 9401 divorces which occur after 21 years of married life? How, on
the other hand, does the curve start ¢ Tt is impossible to place 5314 divorces at the
mean—~6 months—of the one year duration. It is obvious that the applications for
divorce will be far more numerous in the last half-year than the first half-year of
matrimony. The very time required to institute legal proceedings and get a divorce
granted must ensure this if nothing else did. Yet these two tails of 5314 and 9401,
of which the accurate distributions are not given, are between + and § of the total
number of divorces, and until we know how they are exactly distributed, we cannot
hope for the very exact fitting of a theoretical curve.

3E 2
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In order to make the best of the “ tails” under the circumstances, their moments
were calculated on two hypotheses, (i.) that they were triangles, (ii.) that they were

logarithmic curves, and the mean of these extreme results taken.
I found

I

(s = 60°7376, ps = 80915,
Y= '150127, p= *36891.

Distance of centroid from start of curve = 9°1183,

’s maximum » , = 274373,

Yo = maximum frequency = 8882'45.

Here the curve is assumed, owing to the obviously long tail to the right and the
abrupt start to the left, to be of Type III. Its equation is accordingly
@

36891
— . I ~150127 3 —.
y = 888245 <1 2_4573> e x, Skewness = '8547.

The curve is figured, Plate 11, fig. 12, and will be seen to rise abruptly at about 47
of a year’s duration. It may be doubted whether legal proceedings even in America
are so rapid that a divorce suit can be complete within six months of marriage. The
carve gives fairly well the general form of the frequency statistics. Could the
moments have been determined with greater accuracy, most probably a better fit
would have resulted. As it is the mean percentage error is above 6.

(80.) Fxample X.—A still more extreme case may be selected from the field of
economics. I take the following numbers from the 1887 Presidential Address of
Mr. GoscuEN to the Royal Statistical Society (‘Journal, vol. 50, Appendix II.
pp. 610-2). I have grouped together both houses and shops, because the details of
the two are not in Mr. GoscHEN'S returns separated for values under £20.

Varuarion of House Property, England and Wales, years 1885 to 1886.

Number of houses. Number of houses.
Under £10 3,174,806 £80 to £100 47,326
£10 to £20 1,450,781 100 ,, 150 58,871
20 ,, 30 441,595 150 ,, 300 37,988
30, 40 259,756 300 ,, 500 8,781
40, 50 150,968 500 ,, 1,000 3,002
50 ,, 60 90,432 1,000 ,, 1,500 1,036
60 ,, 80 104,128

Here clearly the curve starts with the maximum frequency, and further to any
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scale to which the curve can be drawn, it tails away indefinitely to the right. This
justifies us in the assumption that the curve will be fairly approximated to by a form

of type ,
Y = YoP e,

where p would turn out to be a negative quantity lying between 0 and 1. But the
details given us of the start and finish of the curve are far too scanty to allow us to
proceed by moments. In the first place, to measure an element of area of the
frequency curve by an element of value into its mid-ordinate is perfectly legitimate

!

'
4 B

at such a point as B; it fails entirely, however, at such a point as A, which includes
the part of the curve which is asymptotic to the ordinate of maximum frequency.
The area at such a point is much greater than the element into the mid-ordinate,
and the calculation of moments on the assumption that 3,174,806 houses may be
concentrated at £5, is purely idle. The ordinate obtained from the area in this
manner may often differ 30 per cent. from the true ordinate, and yet about three-
fifths of the total number of houses fall into this first group.

Further treating the area as ordinate into element of value is also true only if the
element of value be small. For “elements” such as £150, £200, or even £500, which
are all that are given in the tail of these statistics, it is perfectly idle to concentrate
the area at the mid-ordinate. The centroid of a piece of tail such as the accompanying
figure suggests lies far to the left of the mid-ordinate In other words, to attack the

W\ =

problem by the method of moments, we require to have the “tail” as carefully
recorded as the body of statistics. ~Unfortunately the practical collectors of statistics
often neglect this first need of theoretical investigation, and proceed by a method of
“lumping together ” at the extremes of their statistical series.

Still three further points in regard to the present series of statistics. First, they are
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very unlikely to be homogeneous. Houses with an annual valuation of over £300
hardly fall under the same series of causes as the bulk of houses in the kingdom
which fall under £100. Secondly, when we are told that 3,174,806 houses are valued
under £10, 1t can hardly mean that any houses are valued at 0, certainly not the
maximum number. Hence our frequency curve in theory must not be expected to
rise from zero, but from some point between 0 and £10, which corresponds to the
customary minimum at which a cottage can be rented.

Lastly, there is one special cause at work tending to upset, about the value of £20,
the general distribution due to a great variety of small causes. This is the value at
which taxation commences, and we should expect a larger proportion of houses to be
built just under the taxable value than is given by a chance distribution.

Notwithstanding the many disadvantages of these results, I determined to obtain
if possible a skew curve approximating to the main portion of the distribution. I took
£10 as my unit of value and 1000 houses as my unit of frequency. I started with
the ordinary method of moments, concentrating each area at its centroid as given by
the total valuation of the group, also recorded by Mr. GoscHEN, and found a curve of

the type
Y =Yoxre ™,
with
p=— 65448, 5= 2008

This was so far satisfactory that it showed even by this rough method that p was
negative, and between 0 and 1. Thus the theoretical curve gave an infinite ordinate,
but finite area at its start.

A laborious method of trial and error was then adopted, and by varying p and
slightly, as well as v, and the origin of the curve, I sought to improve the fit given
by the rough method (in this case) of moments. The fundamental consideration was
to keep the total areas under £100 value as nearly as possible the same in the
theoretical curve and the statistics. This portion of the curve I treated as prac-
tically referring to homogeneous material. Ultimately I found the following curve :

y = 138832 g~ 090077 o= 3057256z

with the origin as *45 unit from zero. Thus the minimum annual valuation was
£4 10s., or, to a weekly valuation, of 1s. 74d. This would connote probably a weekly
rental of 1s. 8d. to 2s. The total area of this theoretical curve was 5795 in thousands
of houses ; of these 5729 had a valuation under £100 and 66 over £100 ; the corres-
ponding numbers for the statistics themselves are 5720 and 110. The additional 44
over £100 I assume to be due to the heterogeneity of the statistics—high values
corresponding to blocks of chambers, large hotels and other buildings hardly falling
into the same category as the small house under £100 in value. Unfortunately the
“tail 7 of the statistics is so defectively recorded that there is no hope of reaching a
separate distribution for this high class property.
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Returning now to the curve and statistics, we have the following comparative
results :(—

Number of 1000’s of houses.
Value. [
Theory. Statistics.
ﬁU —
nder 10 3580 3175
10-20 1045 } 4625 1451 } 4626
20-30 452 442
30-40 253 260
40-50 153 151
50-60 97 90
60-80 102 104
80-100 46 47
Above 100 66 110

The general accordance here is very marked, the chief divergences heing accounted
for by the special causes to which we have referred above, i.e. (i) the crowding of
houses just below the limit of taxation, and (ii) the divergent character of the causes
at work determining the frequency of low and high class house property.

The results are depicted, Plate 14, fig. 13.

It will be observed that so far as the observations can be plotted to the theoretical
curve, it leaves little to be desired. The histogram* shows, however, the amount of
deviation at the extremes of the curve.

(81.) Example XI.—Frequency curves of the type considered in Example X. are
so common that it is needful to make a few further remarks with regard to them,
and illustrate them by further examples. Such curves occur in many economical
instances (income tax, house valuation, probate duty), in vital statistics (infantile
mortality), and not uncommonly in botanical statistics of the frequency of variations
in the petals or other characteristics of flowers.

As we have noted, the method of moments developed in this memoir cannot be
directly applied, or only applied to obtain a first approximation to the constants
required. This first approximation, however, will often assist us to obtain with
quite sufficient accuracy the value of the moments of portions of the area, especially
if the position of the initial or asymptotic ordinate is known.

For example, consider the curve of limited range :

y=yox? (b —a)

where p lies between 0 and 1. Then if « be its area, au”; = the s moment about
the asymptotic ordinate of the area up to x:

* Introduced by the writer in his lectures on statistics as a term for a common form of graphical
representation, 7.e., by columns marking as areas the frequency corresponding to the range of their base.
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ap”y = [0 Yo' =2 (b — w)' de

1 na non—1 - [x\2
= * — Z) - 1+s—p
b {1+8—p b(2+s-—p)+1.2(3+s-—p)(b> &C'}“" :

Hence, if the range b be large and a be small, this series converges very rapidly,
and we may often take with sufficient approximation even only its first term.

Thus
1—»p h
” —_— I A
Ml_mZ—p
o gl—p
Pe=vs,
L nearly.
//_a/_g]-_-Y7 y
o3 = 4__2)
=,ML_(EI -p
1—p J

Now a is given by the statistics, and we note that if p has been determined to a
first approximation by the method of moments, we can now improve the values of the

moments of the areas near the asymptotic ordinate by the use of the above
expressions.

For example, if p = "5 as a first approximation, we have

1z

—1 = 142 — 1.3
1= 3%, W= 35X, g =gl

and as the area up to a short distance from the asymptotic ordinate is generally a

considerable proportion of the total area, the above values very considerably medify
the calculated moments. ‘

In the case of the curve
Y = ygxre™r,
we have the result

, _ 1 a2 vt
s = yor' T p{1+s—p-2+(ys—]o+ }

Hence, as before, if y and « be small,
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=7 + F— a*, approximately.®

Results such as the above enable us to approximate fairly rapidly to the constants
of a frequency curve.

As a special example, I take the following. In 1887, Herr H: pE VRIES transferred
several plants of Ranunculus bulbosus to his flower garden, and counted the petals
of 222 of their flowers in the following year. He found (° Berichte der deutschen
botanischen Gesellschaft,” Jahrg. 12, pp. 203-4, 1894) .

Petals . . . . 5 6 7 8 ) 10
Frequency . . . 133 55 23 7 2 2

Now the series here proceeds by discrete units, and corresponds probably to a hyper-
geometrical series, but remembering how closely the results of tossing ten coins can
be represented by a normal frequency curve, I was not without hope that the areas of
a skew frequency curve would give results close to these numbers. The buttercups
start with 5 petals and run to 10, I therefore took my origin at 45 and determined

the constants to a second approximation in the manner above indicated. There
resulted,
y = 2112252732 (73255 — x)*1¥,

a curve of Type I., with limited range, the asymptotic ordinate being at 45 petals,
or practically a distribution ranging from 5 to 11 petals.
Calculating the areas, there results,

Petals . . . . . . . 5 6 7 3 9 10 11
Freat [Theory. . . 1869 485 226 96 34 8 9
requency )

L Observation . 133 55 23 7 2 2 0

The agreement here is very satisfactory considering the comparative paucity of the
observations.t The results are exhibited by curve and histogram, Plate 15, fig. 14 ; the
two points on the ¢ observation curve” corresponding to five and six petals are
deduced from the areas given by the statistics by the same percentage reduction as

* Another very serviceable formula is due to ScmHLOMILcH. It gives the area of the ¢ tail” of
y = yg~ e~ v* from # = @ to # = ® in a rapidly converging series, 7.c.,

on z/ow‘f’e“w{ P P p(p*+1) }
area =J07 " "~ 0] — + — + &e. V.
7 WAl T r D e+ wrDerD s

+ 2048 tosses of 10 shillings at a time gave a mean 3 per cent. deviation between theory and
experiment, 100 tosses gave about 9 per cent. The above series corresponds to about 7:2 per cent., and
thus is quite within the range of accuracy of coin-tossing experiments,

MDCCCXCV,—A, 3 F
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converts the theoretical areas into the ordinates of the theoretical curve. For other
petals, ordinates and areas practically coincide in value.

(32.) Example XII.—Another example of a similar kind may be taken from
Herr pE Vries’ memoir (loc. cit., p. 202). He cultivated under the name of perum-
bellatum a race of Trifolium repens, in which the axis is very frequently prolonged
beyond the head of the flower, and bears one to ten blossoms. In the summer of
1892 he had a bed of such clover, produce of a single plant, and in July counted the
extent of this variation on 630 flowers. In 325 cases the axis, according to DE VRIES,
had not grown through the head of the flower, in 83 cases it had grown through and
bore one blossom, in 66 cases two blossoms, and so on. The complete statistics are
as follows :—

High blossoms 0 1 2 3 4 5 6 7 8 9 10
Frequency . . 325 83 66 51 36 36 18 7 6 1 1

Taking moments in the manner of the earlier part of this memoir, I found as a first
approximation to the frequency curve :

y = 4'52842 = MBIT (10°69114 — z)L52%044,

with the origin at "47813 to left of maximum ordinate. This first approximation
seemed to justify three things: (i.) starting at *5 to the left of the maximum ordinate;
(ii.) assuming a range, 11, which just covered the whole series of observations, t.e.,
from 5 to 10°5; and (iii.) that the moments of the areas might be found from a value
of p not far from 5.

A second approximation was then made, and taking moments round the asymptotic

ordinate, I found :
pp= 18680, = 777028,

whence, in the manner of §16, we have:

X1 = '1698182, X = 3781526,
and ultimately : '
‘ m, = — 493118, my = 1°47797,
and
Yy = 4:65148.

The equation to the frequency curve is therefore :

y = 465148 m—'e&%llﬁ (11 — x)1'47797.

The value found for p, 7.c., *493, justifies our calculation of the moments on the
assumption that it was 5.
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Placing statistics and theory side by side, we have :

ngh} 0 1 9 3 4 5 6 7 8 9 10
blossoms

Statistics 325 83 66 51 36 36 18 7 6 1 1
Theory  303'22 106°12 6999 4927 3523 2493 17:07 10°96 627 279  -52

The agreement between theory and observation is here all that could be desired,
except in the case of 0 and 1 high blossoms. Here 22 blossoms have in actual
counting been transferred from the theoretical group of 1 to the theoretical group of
zero high blossom. I consider it highly probable that the theory here gives better
results than the actual statistics ; and this, for the simple reason that it must be
very difficult to distinguish between any one of the low blossoms and a very slighitly
extended axts bearing only one blossom, that is to say, the extension of the axis
passes insensibly into one of the low blossoms, or vice versd, and in a certain proportion
of cases it must be difficult to distinguish between the categories 0 and 1. The com-
parison between theory and observation is represented by curve and histogram,
Plate 15, fig. 15.

Examples X. to XII. will suffice to illustrate the application of our theory to
extreme cases of skew distribution.

(38.) Example XIII.—It must not be supposed that in every case of variation by
units (as in the buttercup and clover examples), the curve will be found to be of
Types I or III. It is impossible to illustrate, in anything short of a treatise
on statistics, the infinite variety of statistical distributions, but the occurrence of
Type IV. in zoological, as distinguished from botanical measurements, is so persistent
that it seems well to illustrate this for the special case of discontinuous variation.
Professor WELDON has kindly given me the following statistics of dorsal teeth on the
rostrum of 915 & and ? specimens of Palemonctes varians from Saltram Park,
Plymouth.

Teeth. Cases.

18
123
372
349

50

~J O Ux ™ OO =

The centroid-vertical here lies ‘318661 of a tooth beyond 4, e., at 4-313661 teeth.
The following are the moments about centroid-vertical : —

3 r 2
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= 910906 |
py = 233908 rwhere the unit = 1 tooth.
1y = 2625896

o
For the normal curve these give

Standard deviation = 0544,
Maximum ordinate == 382-5.

For the skew curve we have

By = 072222, B, = 3164684,
Hence

or, we have a curve of Type IV. The values of B, and B,, however, show that it will
not differ very widely from the normal type.

Proceeding to determine the other constants we find

P = 111-398,
v = — 109°047 (v is negative since u, is positive),
a = 7°16613, m = 56°699.

Distance of origin from centroid-vertical = 7-0149,

log 7/, = 18:4431056.
Thus

y —_ y() COSII3'398H 6109‘0179
x= 716613 tan 6

give the form of the curve. This curve, the normal curve, and the observations are
drawn, Plate 13, fig. 16. A comparison of the observations and the normal curve shows
an amount of skewness in the tails of the former, which would be very improbable if
the normal curve really expresses the distribution. The skew curve really accounts
for this divergence and is a sensibly better fit. The mean percentage errors in the
ordinates are for the two cases 8:67 and 3'88. The skew curve is thus an excellent fit.

The discontinuity in these teeth probably corresponds to a hypergeometrical polygon,
of which the skew curve is a limiting form.

(34.) ZExample XIV.—Another extremely interesting illustration of skew varia-
tion will be found in the statistics of pauperism fer England and Wales, to which my
attention was drawn by Mr, G. U. YuLg, who Lad plotted the statistics from the raw
material provided in Appendix I. of Mr. CuarLEs Boorw’s ¢ Aged Poor ; Condition’

In Plate 14, fig. 17, we have 632 unions distributed over a range of pauperism varying
from 100 to 850 per 10,000 of the population for the year 1891. The observations
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are at once seen to give a markedly skew distribution. Taking 50 paupers as unit of
variation, we find

o = 631889, - B, = 3060017,
s = 6762465, B, = -173942.
= 122°1815,

Hence
38, — 2B, + 6 = 401791,

or the curve is of Type L
The other constants were found to be

== 28165013,

e = 1480886,
Cmy = 20°169714, @, = 24'22083
m, = 5995305, g = 7199312
Yy = 99°9065.

Range = 81°4196.

Maximum = 60484 to left of centroid vertical.
Skewness = *24.

The equation to the curve is thus

2 X >20'1697

59953 /

/

For the normal curve,
Standard deviation = 2514,

Maximum ordinate = 100°301.

Both skew curve and normal curve are drawn on Plate 14, fig. 13. The former is at
once seen to be an excellent fit. We might fairly have simplified our work by taking
zero paupers as the commencement of our range, but preference was given to the more
general results in order to demonstrate that they give no appreciable amount of
“ negative pauperism.” The range determines a limit of about 15 per cent. as the
greatest possible amount of pauperism. The normal curve is seen to diverge very
widely from the statistics besides giving an appreciable amount (3 to 4 unions) with
“ negative pauperism.” The point-binomial for these statistics is also figured on the
plate. - Its constants are p = '833, ¢ == "167, n = 144834, ¢ = 1'70306, the start of
the binomial being 581508 to the left of the centroid-vertical : see § 5. The fit is a
very close one, the mean error of ordinate = 537, and the suggestiveness of such
results for social problems needs no emphasising.

The case is of peculiar interest, because the statistics of pauperism are known to
give a definite trend to the distribution, z.e., if the statistical curve of pauperism for
1881 be compared with that of 1891, for example, the maximum frequency of the
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earlier will be found at a much higher percentage. The whole frequency curve is
sliding across from right to left. Now it is of interest to notice that in this, as
in other cases where the trend of the variation is known @ priors, the skew curve is
shifted away from the normal curve in the direction in which variation is taking place
with lapse of time. It is not safe at present to extend this to all biological instances,
but the result suggests, for example, that there is a secular progression towards brachy-
cephaly in Bavarian skulls (fig. 8), towards reduced antero-lateral margin in crabs
(fig. 4), towards increased height in St. Louis school-girls (fig. 7), and towards long-
sightedness in Marlborough School boys.* I believe most suggestive and important
results might be obtained for the theory of evolution, if we only had the series of
skew curves for a biological case of progressive variation in the same manner as we
have for pauper percentages.

(35.) Example XV. The theoretical resolution of heterogeneous material into
two components, each having skew variation, is not so hard a problem as might at
first appear, and I propose to deal at length with the subject later. If there be more
than two components, the equations become unmanageable. In this case however, if
the components have rather divergent means, a tentative process will often lead to
practically useful results. To illustrate this I propose to conclude this paper by an
example of a mortality curve resolved into its chief components. By a mortality
curve I understand one in which frequency of death (for 1,000, 10,000, or 100,000
born in the same year) is plotted up to age. I have worked out the resolution for
English males, and for French of both sexes. The generally close accordance of the
results for both cases has given me confidence in their approximate accuracy. The
method adopted was the following: An attempt was made to fit a generalised
frequency curve to the old age portion of the whole mortality curve, the constants of
thig curve being determined from the data for four or five selected ages by the method
of least squares; the frequency curve so determined was subtracted from the total
curve, and a frequency curve fitted by the same method to the tail of the remainder.
This second component was again subtracted and the process repeated, until the
remainder left could itself be expressed by a single frequency curve. The com-
ponents thus obtained were added together, and a tentative process adopted of
slightly modifying their constants and position, so that the total areas of the com-
ponents and of the whole mortality curve coincided. It was soon obvious that no
very great change either in the constants or position was permissible, if the sum
of the components was to give the known resultant curve, hence I feel very confident
that whatever be the combination of causes which result in the mortality curve, that
curve is very approximately to be considered as the compound of five types of
mortality centering about five different ages. The allied character of the results
obtained for both French and English statistics confirms this view.

* Dr. RoBErTs’ statistics, which I have reduced to skew curves, but have not reproduced in this
memoir.
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Professor Lex1s has already suggested that the old age distribution of mortality
is given by a normal curve.* Now, although the rougher French statistics give
a fair approximation to a normal curve, this is not true for English males. The
curve for old age is of Type L, but for all practical purposes it may be treated as one
of Type III. Whatever be the chief causes of old age mortality, they extend very
sensibly through middle life, and less sensibly through youth, only becoming inappre-
ciable in childhood. Hence, if we speak of our first component as the “mortality of
old age,” the name is to be understood as referring to a group of causes especially
active in old age mortality, but not excluded from other portions of life. The
second and third components I found to be skew curves, but so nearly normal that to
my degree of approximation no stress could be laid on the skewness obtained. The
fourth component was a markedly skew curve, also closely given by a curve of
Type III., and corresponding in general shape to the mortality curves of fevers
peculiarly dangerous in childhood (e.g., diphtheria, scarlet fever, enteric fever, &e.).
These three components I have termed respectively the mortality of middle life, of
youth, and of childhood. I found it impossible to fit the remainder of the original
mortality curve with any type of generalised curve, so long as I supposed the
mortality frequency to commence with birth. I was therefore compelled to suppose
the set of causes giving rise to ‘“infantile mortality ” extended into the period of
gestation, and I obtained a satisfactory fit for the infantile mortality frequency, when
the range of the curve started about ‘75 of a year before birth. The form taken by
the curve is the extreme type in which the curve is asymptotic to the ordinate of
maximum frequency (¢f. Examples X.-XII.). The five fundamental components of
the mortality curve for English males are the following, the numbers referring to
1000 contemporaries, or persons born in same year :—

(A.) Old Age Mortality.

Total frequency = 484°1.
Centroid-vertical at 67 years.
Maximum mortality = 15°2 at 71°5 years.

The equation ist

,y — 15-2 <1 _w.)7.7525 6'221590
A EE -

the axis of y being the maximum ordinate and the positive direction of x towards
age. The skewness of the curve = ‘345, and its range concludes at 106°5 years.

The corresponding French component = 411, but the maximum mortality (16°4)
occurs at 72°5 years.

* ¢ Zur Theorie der Massenerscheinungen in der menschlichen Gesellschaft,” § 46. Ereiburg, 1877.
+ Unit of # = 1 year, unit of y = 1 death per year.
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(B.) Mortality of Middle Life.
Total frequency = 1732,
Centroid-vertical at 41°5 years.
Maximum mortality = 5°4.

The curve is very approximately normal, and has a standard deviation of 128
years. The corresponding French component = 180 deaths, standard deviation
12 years, with a maximum of 6 at 45 years.

(C.) Mortality of Youth.
Total frequency = 50°8.
Centroid-vertical at 22'5 years.
Maximum mortality = 2°6.

The curve is very approximately normal, with a standard deviation of 7-8 years.*
The corresponding French component gives a total mortality of 78, standard deviation
of 6 years, and a maximum of 5°2 at 22'5 years.

The greater and more concentrated French mortality of youth is noteworthy.

(D.) Mortality of Childhood.
Total frequency = 46°4.
Centroid-vertical at 6:06 years.
Maximum mortality = 9 at 3 years.

The equation to the curve, the axis of  being maximum ordinate, is
y=9 (1 -+ x)-am o3z

Thus the skewness of the curve = *87, and the range commences at 2 years.

The French component appears to be shifted further towards youth. It gives a
total of 47 deaths, centroid at 875 years, and a maximum of 58 at 575 years,
skewness = 71. Childish mortality is therefore, if these results be correct, more
concentrated, and at an earlier age in England than in France.

(E.) Infantile Mortality.
Total frequency after birth = 2457, v
Maximum frequency after birth occurs in first year and equals 156°2.
The equation to the frequency curve is
y = 2368 (& + 75)"7 =T,

the origin being at birth, the skewness 707, and the centroid at ‘083 year,= 1 month
nearly, before. birth. Taking the corresponding French component, we have a total
frequency after birth of 284, with 186 deaths in the first year of life. Infantile
mortality is therefore considerably greater in France.

2
* The mortality of youth would be better expressed by a curve of type y = %, (1 - %)m see our
§ 13 (v.).
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If we investigate the areas of our infantile mortality curve, we have the following
deaths :—

Theory. ‘ Statistics. |

|

1st year of life. . . . 156-2 ' 1585 |
2nd year of life . . . 535 ' 51-2 l

After this the mortality of childhood beging to sensibly increase the infantile
mortality. Turning to the *“antenatal” portion of the curve, we have the following
results, of course not verifiable from ordinary mortality statistics :—

(i.) The total “antenatal” deaths for the 9 months preceding birth are 605 for
every 1000 actually born and registered.

(ii.) “ Antenatal” deaths for the 6 months immediately preceding birth are 214 for
every 1000 born.

(iil.) “ Antenatal” deaths for the 3 months immediately preceding birth are 83 for
every 1000 born at the proper period.

The 891 “deaths ” of the first three months of pregnancy would not be recorded,
and in many cases possibly pass without notice. The 214 deaths of the remaining
six months would be considered as miscarriages or still-births. The proportion of
1 in 6 of such accidents to births of the normal kind does not appear excessive, On
the average Dr. GALAPIN says such an occurrence is ““ the experience of every woman
who has borne children and reached the limit of the child-bearing age.” So far then
there appears nothing to contradict our theoretical results in what is known of the
first six months of antenatal life.

For the last three months we have more definite data. According to our curve
we have 83 deaths (per 1000 born) in the last three months before birth, or 83 in
1083 pregnancies = about 77 per cent. Now this percentage must consist of two
factors—still-born children and children who, born before their time, die shortly
after birth, and who would not be recorded in any proper proportions in statistics
based on census returns, nor as a rule in the returns of maternity charities.

For statistics of still-births, I find :

per cent.
Dublin Rotunda Hospital (1847-54) . . . . . . . . . 69
y . . (1871-75) . . . . . . ... 61
Dr. J. H. Davis for 14,000 births for a large matermty charity
in St. Paneras . . . 4

Guy’s Hospital Lying-in Chamty, 25 77/ blrths, 1, 127 born
dead or died within a few hours, 1000 corresponding to
births in the last three months of pregnancy. . . . . 384
NewsHOLME’S “ Vital Statistics ” (no authority cited) . . . 4
MDCCCXCV.—A. 3 G
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It would thus appear that there are 4 to 5 per cent. of still-births, thus leaving
2'7 to 3'7 per cent. of deaths to be accounted for—if there is any validity in our
analysis—by deaths of children born before their proper time and dying before
their proper birthdays. Such deaths would not appear in the category of still-born
children in the returns of the maternity charities, nor in any true proportion in the
census returns.

Thus, while it is impossible to assert any validity for the antenatal part of our
curve of infantile mortality, while, indeed, the constants of that curve, and con-
sequently the percentages of antenatal deaths, might be considerably modified had
we surer data of the actual deaths in the first year of life ; still there appears to be
nothing wildly impossible in the results obtained, and they may at any rate be
suggestive, if only as to the nature of those statistics of ““antenatal ” deaths, which
it would be of the greatest interest to procure.

The absolute necessity of skew curves in all questions of vital statistics is sufficiently
evidenced in this resolution of the general mortality curve. A complete picture of the
resolution into components of the mortality curve is given (Plate 16, fig. 18), with
a separate figure on an enlarged scale of infantile mortality.

(36.) In conclusion, there are several points on which it seems worth while to insist.
The normal curve of errors connotes three equally important principles :

- (1) An indefinitely great number of  contributory ” causes.

(ii.) Each contributory cause is in itself equally likely to give rise to a deviation of
the same magnitude in excess and defect.

(iit.) The contributory causes are independent.

The frequency of each possible number of heads in repeatedly throwing several
hundred coins in a group together, practically fulfils all the above three conditions.

Condition (ii.) is not, however, fulfilled if a number of dice be thrown or a number
of teetotums of the same kind be spun together. Condition (iii.) is still fulfilled.

Condition (iii.) is not fulfilled if p cards’be drawn out of a pack of n# cards containing
r equal suits, supposing the p cards to be drawn at one time. Now, it appears to
me that we cannot say & priori whether the example of tossing, of teetotum-
spinning, or of card-drawing is more likely to fit the proceedings of nature. There
is, I think, now sufficient evidence to show that the conditions (i) to (iil.) are not
fulfilled, or not exactly fulfilled, in many cases—in economic, in physical, in
zoometric, and botanical statistics. We are, therefore, justified in seeing what results
we shall obtain by supposing one or more of the above conditions which lead to the
normal curve to be suspended. The analogy of teetotums and cards leads us to a
system of skew frequency curves which in this paper have been shown to give a very
close approximation to observed frequency in a wide number of cases-—an approxi-
mation quite as close as the writer has himself obtained between theory and
experiment in very wide experiments in tossing, card-drawing, ball-drawing, and
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lotteries. But the introduction of these skew curves leads us to two important
conclusions :(—

(i) If a material be heterogeneous we have no right to suppose it must be made up
of groups of homogeneous material each obeying the normal law of distribution. Each
homogeneous group may follow its own skew distribution.

(ii.) If material obeys a law of skew distribution, the theory of correlation as
developed by GArToN and DICKSON requires very considerable modification.

We may note two points bearing on these two conclusions, which do not seem
without interest for the general problem of evolution. Fever mortality curves are
skew curves. The general mortality curve—frequency of death at different ages—-
is a compound of many diseases, but with sufficient approximation, it can be resolved
into five components ; three of these components are markedly skew, the other two
less so. Selection, according to age, is thus distributed with different degrees of
skewness about five stages in life; this at least suggests that selection according to
the size or weight of an organ may be compound, if we take a considerable range of
size, and that the components may have varying degrees of skewness.

The correlation of the ages of husband and wife at marriage is a subject with
regard to which we have a very fair amount of material. For a given age of the
husband, the frequency of marriage with the age of the wife fits very closely a curve
of Type IV., and with sufficient exactness very often a curve of Type IIL* The
sections of the surface of frequency are oval curves differing entirely from the ellipses
of the GarroN-DicksoN theory, but resembling in general the ‘“oval” polygons
obtained by taking horizontal sections of the frequency polyhedron for the correlation
of cards of the same suit in two players’ hands at whist. Plate 9, fig. 19, shows how
widely these differ from ellipses. There seems therefore to be considerable danger
in assuming in vital statistics, whether in man or the lower animals, that the * con-
tributory ” causes are independent. All the statistics for sizes of organs in animals,
which I have yet analysed, if they are not compound, seem to agree in following a curve
of Type IV., and suggest this kind of inter-dependence of the  contributory ” causes.
Their correlation surfaces of frequency will thus have for lines of level skew ovals—
what for want of a better name may be termed “whist ovals” as distinguished
from the ellipses which flow from the normal frequency surface. The remarks from
quite a different standpoint of RANKE on skull measurements seem to lead to the
same conclusion. I propose on another occasion to illustrate the resolution of
compound curves into skew components, and further to deal with the main features
of correlation in cases of a skew frequency distribution.

* I have fitted some of Purozz0’s marriage statistics with skew curves, but reserve their discussion
for the present, as they belong properly to the theory of skew correlation.
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Norz.

Added May 24, 1895.

[Since writing the above memoir my attention has been drawn to a note in
Dr. WrsTERGAARD'S ““Theorie der Statistik,” referring to Professor T. N. THIELE’S
treatment of skew frequency curves. I have procured and read his book, ¢ Forelaes-
ninger over Almindelig Iagttagelseslaere, Kjgbenhavn, 1889. It seems to me a.very
valuable work, and is, I think, suggestive of several lines for new advance. It does
not cover any of the essential parts of the present memoir. Dr. THIELE does indeed
suggest the formation of certain ““ half-invariants,” which are functions of the higher-
moments of the observation—quantities corresponding to the m,— 3y, py— L10pgps,
&c., of the above memoir. He further states (pp. 21-2) that a study of these half-
invariants for any series of observations would provide us with information as to the
nature of the frequency distribution. They are not used, however, to discriminate
between various types of generalised curves, nor to calculate the constants of such
types. A method is given of expressing any frequency distribution by a series of
differences of inverse factorials with arbitrary constants. Thus if

[n

/81& (.”C) =

—Jéi'n—-:c

“and

A’B” (w) =18” (x + "}2‘) _Bu(”_%)

we can express any law of frequency y = f(x) by

S (@) = boBu (@) + by ARy () 4.+ 4 by Ay (),

where the constants by, b, . . . b, can be determined numerically when the frequency
of n 4 1 chosen derivation-elements is known.

I see a possibility of more than one theoretical development of interest, especially
in relation to compound material, from this development of Dr. TRIELE'S, but I doubt
whether it can be of practical statistical service even as an empirical expression for
frequency. Instead of having the 3 to 5 constants of our generalised curves, the full
value of Dr. THIELE'S expression requires as many constants as there are recorded
frequencies, and then expresses the result in functions like A”8; (), by no means easily
realised or likely to appeal to the practical statistician. It is true the complete series
gives absolutely accurately the frequency of all the points used in the calculation, but
it does not, like the generalised curves, indicate the purely accidental variations of
the frequency. If, on the other hand, we take, as Dr. THIELE suggests, some half-
dozen terms only of the series—which give the really essential character of the
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frequency—we obtain results which, although more complex in form, are not as satis-
factory as those given by the generalised curve.’ ‘
For example, Dr. THIELE gives the following series (p. 12) :—

Valoes . . . . .| 7 | 8 9 10| 11| 12

| S 13| 14| 15

16i 17{ 18] 19

Frequency . . . .. 8 7 35 | 101 | 89 94:‘ 701 46 | 30

His “ Faktiske Fejllove ” gives

y = 12218, () + 278 AB,, () + 600 A2B,, ()
+ 1216 A8, () + 278 A*B; (x) — 318 AB, ()
+ 574 A8By () + 596 ATB; () ++ 499 ASB, (x)
+ 259 A°B, () — 0645 AR, (z) — ‘0303 AU, ()
— 0088 AB, (x).

He tells us that 6 terms practically suflice, the additional terms merely accounting
for the individual irregularities of this particular 500 observations. Without speci-
fying what the observations are, he tells us that the possible values run from 4 to 28,
or that the range is really limited.

If we fit our generalised curve of Type I., we find for its equation :

2\ 889708 2 \17'27285
y = 98801 <1 + 4-5191> <1 - 20~0§9é> ’

the origin is at 11191, or the range runs from 6:6715 to 811202, .., is a range of
245487 instead of 25, but is shifted some 2 to 3 units. Considering the small
number of observations, this is not a bad approximation to a marked feature of the
distribution not indicated on the surface by the observations, nor discoverable from
the “ Faktiske Fejllove.”

Comparing our curve (i.) with (il.) the actual statistics—all 18 terms of the
“ Faktiske Fejllove” series, and with (iii.) the first 6 terms of the same series, we
have the following results :—

| i | ! H |
Values.| 7 | 8 | 9 | 10 | 11 12 13 | 14 15 16 | 17 | 18 | 19
Gy .| 1| 10 |42 | 80 99 92 | 7o | 48 20 | 15| 6 | 3 | 1
Gi) .| 8| 7 |8 |00 | 89 | 94 | f0 | 46 30 | 15 | 4 | 5 | 1
Gi) | 1| 11 | 40 j 82 I103 o2 | 0 | 48 2 13 8| 4| 1
. |

The generalised curve here gives slightly the better results in addition to its more
easily realised form, and its fewer constants (iv.).
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On the other hand, there are, I think, some points of first-class theoretical impor-
tance in the mode adopted by Dr. TuieLE for expressing frequency ; it gives us a
means of expanding all varieties of frequency curves in a series of factorial functions
which may lead to important theorems in the analysis of heterogeneous material.]

PrArzs.

The scale of the accompanying figures is not that of the original drawings, and the
clearness and distinctness of the several curves of the same figure have been, in
several instances, partially lost by the process of reproduction and reduction. In
every case the square element of the figure corresponds to the square centimetre of
the original diagram, and is spoken of both in the text of the memoir and on the
figures themselves as a square centimetre. The scale of actual reduction is indicated
by a fraction placed at the lower right-hand corner of the figure.
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~ Fig. 13.
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