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Abstract The scope of this paper is to celebrate the 100th anniversary of the Gini
index by providing the original formulae. Corrado Gini introduced his index for
the first time in a 1912 book published in Italian under the name of “Variabilità e
Mutabilità” (Variability and Mutability). This article provides selected extracts of
Part I of the book dedicated to measures of variability. We find that Gini proposed
no less than 13 formulations of his index, none of which is known today to the large
public. We also find that Gini anticipated some of the developments that derived
from the study of his index.
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1 Introduction

One hundred years ago (1912), Corrado Gini (1884–1965) published the book
“Variability and Mutability” (“Variabilità e Mutabilità”, [2]) where he presented for
the first time the index that today is known as the “Gini Index”. The original book
published in Italian has never been translated into English and the Gini index became
known in the anglophone world probably because Gini engaged in a brief exchange
with Hugh Dalton in the Economic Journal in 1920–1921 [1, 4]. Gini also discussed
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his index and its relation with the Lorenz curve in a 1914 article [3] that was later
translated into English [5]. However, despite the numerous formulations of the Gini
index that have appeared in the literature over the years, the original formulations
are largely unknown.

As suggested by the title, Variability and Mutability is divided into two parts,
the first discussing indices of variability—including various versions of the Gini
index—and the second discussing indices of mutability. Gini explains the difference
between the two classes of indices as the first (variability) being devoted to the
measurement of quantitative phenomena and the second (mutability) being devoted
to the measurement of qualitative phenomena.

This article focuses exclusively on the first part of the book where Gini introduces
and discusses indices of variability. In this part of the book, Gini defines his index
as “the mean dif ference from all observed quantities”, shows the crucial differences
between his index and popular measures of variability until then (the simple or
probabilistic mean deviation from the median; and the simple, the square or the prob-
abilistic mean deviation from the arithmetic mean), provides different formulations
to easily compute his index with various types of data and indicates the fields where
each formulation might be more appropriate to use. The text is enriched with many
curious and practical applications that make the reading pleasant and surprisingly
modern.

Gini himself was a rather extraordinary man of culture with degrees in law,
mathematics and biology, interests spanning across the social and natural sciences,
excellent knowledge of various languages and a very extensive publication record.
One biography1 claims that Gini authored more than 800 publications, 56 of
which can be found today on JSTOR. These include articles in almost all major
international journals in economics, statistics, political science and sociology, an
achievement that very few social scientists have been able to match since and that
Harvard University rewarded with a honorary doctoral degree of science in 1936.
Gini published “Variability and Mutability” at the age of 28, two years after he
obtained the Chair of Statistics from the University of Cagliari.

The scope of this paper is to celebrate the 100th anniversary of the Gini index, to
provide the original formulations of the index and to illustrate how Gini anticipated
some of the developments that derived from the study of his index. Many of the
insights present in the book have been largely overlooked probably because the book
was never translated into English and did not reach an international audience. We
attempt here to recover some of the highlights from the original publication.

A few notes on the text of this article. The original text of the part on “Variability”
counts 8 sections, 53 paragraphs and 94 pages rich in examples and mathematical
demonstrations. The paper provides a mix of summaries of the various sections and
literal translations, where we thought that the original text should be preserved. We
also needed to be selective with the mathematical expressions and we opted to focus
on the parts where the various forms of the Gini index appear. All mathematical
expressions are reported as in the original text. For clarity and for easy reference to
the original book, the numbers of the original paragraphs have been preserved. The
section titles include translations of the original titles while the section numbering

1http://www.umass.edu/wsp/statistics/tales/gini.html

http://www.umass.edu/wsp/statistics/tales/gini.html
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and the numbering of equations is our own. Table 1 provides a summary of all
different formulations of the Gini index found in the original text.

2 Different aspects in the study of the variability of characters (Diversi aspetti
nello studio della variabilità dei caratteri)

11 The analysis of variability, Gini explains, is concerned with two different cate-
gories of characters (objects). The first category is made of characters that have the
same intensity during observation but that, due to measurement errors, can result
in different measures of the same intensity. Natural sciences are typically concerned
with these characters. For example, the measurement of a mountain’s height can
result in slightly different values with repeated observations because measurement
instruments can hardly be perfect. The second category is made instead of characters

Table 1 Summary of the different formulations of the Gini index

Form � �R Equations

I
2

n(n − 1)

∑ n+1
2

i=1
(n + 1 − 2i)(an−i+1 − ai)

2
n2

∑ n+1
2

i=1
(n + 1 − 2i)(an−i+1 − ai) (1), (2)

II
2

n(n − 1)

∑ n+1
2

i=1
di,n−i+1(an−i+1 − ai)

2
n2

∑ n+1
2

i=1
di,n−i+1(an−i+1 − ai) (4), (5)

1
n(n − 1)

∑n

i=1
di,n−i+1|ai − an−i+1| 1

n2

∑n

i=1
di,n−i+1|ai − an−i+1| (6), (7)

III
4

n(n − 1)

∑n

i=1
di,M|ai − M| 4

n2

∑n

i=1
di,M|ai − M| (13), (14)

IV
4

n(n − 1)

∑s

k=1
dkM fk|xk − M| 4

n2

∑s

k=1
dkM fk|xk − M| (15), (16)

V
n

n − 1

∑n
i=1 di,n−i+1|ai − an−i+1|

2
∑n

i=1 di,n−i+1
d

∑n
i=1 di,n−i+1|ai − an−i+1|

2
∑n

i=1 di,n−i+1
(19), (20)

VI
n

n − 1

∑n
i=1 di,M|ai − M|∑n

i=1 di,M

∑n
i=1 di,M|ai − M|∑n

i=1 di,M
(22), (23)

VII
2

n(n − 1)

∑n

h=1
(Th − Fhah)

2
n2

∑n

h=1
(Th − Fhah) (37), (36)

VIII m

√
1

n(n − 1)

∑n

k=1

∑n

i=1
|ai − ak|m m

√
1
n2

∑n

k=1

∑n

i=1
|ai − ak|m (38), (39)

IX 2�R = √
2(2 SA) 2� =

√
2n

n − 1
(2 SA) (43), (42)

X
H(n + 1)

3
H(n2 − 1)

3n
(51), (52)

XI
4

n(n−1)

(n−1)H
n+3

2 −(n+1)H
n+1
2 +H

3
2 +H

1
2

(H−1)2
4

n2
(n−1)H

n+3
2 −(n+1)H

n+1
2 +H

3
2 +H

1
2

(H−1)2 (57), (58)

4
n(n−1)

(n−1)H
n+3

2 −(n+1)H
n+1
2 +2H

(H−1)2
4

n2
(n−1)H

n+3
2 −(n+1)H

n+1
2 +2H

(H−1)2 (61), (62)

XII
n(2s−1)!

(n−1)22s−1(s−1)!(s−1)!
(2s−1)!

22s−1(s−1)!(s−1)! (70), (69)

XIII
2

2h−3
n

n−1
A

2
2h−3

A (78), (77)
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that can be measured with precision. Social sciences sometimes measure phenomena
of such kinds. For example, population and income can be measured with finite and
precise quantities if proper data are available. Clearly, the questions to address with
these two different classes of characters are different. The question to address with
the first class of characters is “How much the dif ferent measures dif fer from the real
value”. The problem to address with the second class is, “How much the dif ferent
objects dif fer from each other”.

12 Astronomers were the first to develop methods to study variability within the
first class of characters. Since measurement errors have by definition the same
probability of having positive or negative values, the arithmetic mean of the different
measures can be interpreted as the most probable effective value of a character
that cannot be measured with precision. In this case, an index that computes the
difference between quantities and their arithmetic mean is an appropriate index of
variability and so are indices such as the quadratic mean deviation, the simple mean
deviation and the probabilistic deviation from the arithmetic mean.

13 However, one should ask the question—Gini argues—of whether the same class
of measures should be used to answer the second question. Since the questions
to answer with exact and inexact measures are different, the indices that measure
the variability of such measures should also be different. It is therefore necessary
to find an appropriate way to measure the intensity of the difference between the
magnitudes of precisely known quantities.

3 The mean difference between several quantities (La dif ferenza media
tra più quantità)

14 The aim of this section, Gini writes, is to find a formula that can explain the
arithmetic mean of differences between n quantities: a1, a2, . . . , an−2, an−1, an, where
n ∈ N. Quantities are assumed to be in ascending order in such a way that ai−1 ≤
ai for each i = 1, 2, . . . , n. Starting from these definitions, Gini provides a page of
calculus that leads to the first formulation of his index:

� = 2
n(n − 1)

n+1
2∑

i=1

(n + 1 − 2i)(an−i+1 − ai) (1)

We will call � the mean difference between the n quantities (“Chiameremo �

dif ferenza media tra le n quantità”.)

15 The sum of the n(n − 1) differences between each quantity and all the others is
the same as the sum of the n2 differences between each quantity and all quantities
(i.e. we consider also the difference between each quantity and itself, which is zero).
Therefore, the average of this n2 differences is:

�R = 2
n2

n+1
2∑

i=1

(n + 1 − 2i)(an−i+1 − ai) (2)
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We will call �R the mean difference with repetition between the n quantities
(Chiamiamo �R dif ferenza media con ripetizione tra le n quantità). It follows that

�R = n − 1
n

�. (3)

According to Gini, both measures have a particular utility. The mean difference
between n quantities is most appropriate for measuring differences between exact
measures in social sciences such as income while the mean difference with repetition
can be used to show the relation between the mean difference and the average
difference from the median or from the mean and has different applications in
statistics (an issue that Gini explores further, paragraphs 20, 21, 23, and 24).

16 Next, Gini introduces the notion of degree (grado), what we would generally
refer to as rank in the modern welfare jargon. Defining rank as the positional distance
between two consecutive quantities, then the rank-distance between two quantities ai

at is di,t, or the number of ranks between these quantities. Also, when i + t = n + 1,
i.e. t = n − i + 1, we refer to ai and at as symmetric quantities. Now, if we define
di,n−i+1 = n + 1 − 2i the the rank-distance between two symmetric quantities ai and
an−i+1, Eq. 1 and 2 can be rewritten as follows:

� = 2
n(n − 1)

n+1
2∑

i=1

di,n−i+1(an−i+1 − ai) (4)

�R = 2
n2

n+1
2∑

i=1

di,n−i+1(an−i+1 − ai) (5)

or also as:

� = 1
n(n − 1)

n∑

i=1

di,n−i+1|ai − an−i+1| (6)

�R = 1
n2

n∑

i=1

di,n−i+1|ai − an−i+1| (7)

17 At this point, Gini provides an empirical example of his indices using a sample
of meat prices in the Parisian meat market between 1867 and 1910. The example
shows how, by arranging the prices series into two symmetric series (split by the
median price), one can easily compute manually the mean difference and the mean
difference with repetition.2

18 The example described above also introduces this paragraph where Gini
presents his indices in the form of distances from the median. Call M the median

2In 1912 statisticians were understandably concerned with the degree of computability of indices in
addition to the characteristics of such indices.
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value between n ordered quantities. In case n is even, the distance between M and
a n

2
or a n

2 +1 is assumed to be half-rank. Then, the absolute difference between two
symmetric quantities is equal to the sum of absolute differences between the median
value and such quantities:

|an−i+1 − ai| = |ai − M| + |an−i+1 − M| (8)

Therefore:
n∑

i=1

|an−i+1 − ai| = 2
n∑

i=1

|ai − M| (9)

Moreover, the rank-distance between two symmetric quantities is equal to two
times the rank-distance between one of those quantities and the median value:

di,n−i+1 = 2di,M = 2dn−i+1,M (10)

Therefore:
n∑

i=1

di,n−i+1 = 2
n∑

i=1

di,M (11)

and:
n∑

i=1

di,n−i+1|an−i+1 − ai| = 4
n∑

i=1

|ai − M| (12)

Hence, we can rewrite Eq. 6 as:

� = 4
n(n − 1)

n∑

i=1

di,M|ai − M| (13)

and Eq. 7 as:

�R = 4
n2

n∑

i=1

di,M|ai − M| (14)

19 Next, Gini tackles the question of repeated values in a series. In such cases,
the author argues that Eqs. 13 and 14 are the best choice to compute the mean
difference and the mean difference with repetition. To illustrate this point, Gini
changes notation as follows. Let s be the different values assumed by the n quantities;
let xk (k = 1, 2, . . . , s) be the k−th value and let fk be the number of quantities
assuming value xk. The rank-distance between value xk and the median M, dk,M,
is the the mean of rank-distances between M and the fk quantities assuming
value xk. We can therefore rewrite Eqs. 13 and 14 as:

� = 4
n(n − 1)

s∑

k=1

dkM fk|xk − M| (15)

�R = 4
n2

s∑

k=1

dkM fk|xk − M| (16)
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An empirical example follows these formulations and illustrates the computation
of such indices. This time Gini uses anthropometric measures of conscripted soldiers
born in Italy between 1859 and 1863.

20 Consider now the case when i assumes all values between 1 and n (the case with
no repeated values). For n even, di,n−i+1 assumes twice all values of the odd numbers
smaller than n. For n odd, di,n−i+1 assumes twice all values of the even numbers
smaller than n. The sum of all odd numbers smaller than an even n is equal to n2

4 ,
and the sum of all odd numbers smaller than an odd n is equal to n2−1

4 which, for n

big enough, can be approximated back to n2

4 . Therefore, for n big enough (even or
odd), we obtain the following:

2
n2

4
=

n∑

i=1

di,n−i+1 (17)

that is equal to writing

n2 = 2
n∑

i=1

di,n−i+1. (18)

And therefore, we can rewrite Eqs. 6 and 7 as:

� = n
n − 1

∑n
i=1 di,n−i+1|ai − an−i+1|

2
∑n

i=1 di,n−i+1
(19)

�R =
∑n

i=1 di,n−i+1|ai − an−i+1|
2

∑n
i=1 di,n−i+1

(20)

Equation 20 shows that the mean difference with repetition between n quantities
equals one half the weighted average of differences between symmetric quantities,
where weights are proportional to the rank-distance between each pair of quantities.

21 From Eqs. 18 and 10 we obtain:

n2 = 4
n∑

i=1

di,M (21)

which allows us to reformulate Eqs. 13 and 14 as follows:

� = n
n − 1

∑n
i=1 di,M|ai − M|∑n

i=1 di,M
(22)

�R =
∑n

i=1 di,M|ai − M|∑n
i=1 di,M

(23)

Equations 22 and 23 are exact for n even and approximated to less than 1
n2

for n odd. Equation 23 shows that the mean difference with repetition between n
quantities equals one half the weighted average of differences from the median value,
where weights are proportional to the rank-distance between each quantity and the
median.
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This is an important result because it underlines that the mean difference between
n quantities differs from the mere average difference from the median, since it
gives more weight to larger differences. This is true also if we compare the average
difference from the median with the quadratic average difference from the median.
In the case of the quadratic average difference, the weight is proportional to the
magnitude of the difference and, in case of the mean difference, the weight is
proportional to the rank-distance between the quantity and the median.

22 It is known, Gini writes, that the simple mean deviation from the median is
minimum as compared to the simple mean deviation from any other quantity.3

To determine the magnitude of the difference between the simple mean deviation
from the median and the simple mean deviation from any other quantity, let H be
any other quantity different from the median. By definition, therefore, the number
of the quantities in the rank above H is not equal to the number of the quantities in
the rank below H, but it is different from the number of the quantities in the rank
below H by some K (which can be either positive or negative).

Consider first the case where n is odd and K is even. The simple mean deviation
from the median M is:

1SM = 1
n

⎛

⎝
n∑

i= n+1
2

ai −
n+1

n∑

i=1

ai

⎞

⎠

while the simple mean deviation from H, for H > M is:

1SH = 1
n

⎡

⎣
n∑

i= n+1+K
2

ai −
(

n + 1 − K
2

H
)

+
(

n + 1 + K
2

H
)

−
n+1+K

2∑

i=1

ai

⎤

⎦

which is equal to:

1SH = 1
n

⎛

⎝
n∑

i= n+1
2

ai −
n+1+K

2 −1∑

i= n+1
2

ai −
n+1

2∑

i=1

ai −
n+1+K

2 −1∑

i= n+1
2 +1

ai + KH

⎞

⎠

from which we obtain:

1SH =1SM + 1
n

⎛

⎝HK − 2

n+1
2 + K−2

2∑

n+1
2

ai + M − H

⎞

⎠

Analogously, it is possible to demonstrate that, given H < M:

1SH =1SM + 1
n

⎛

⎝2

n+1
2 + K−2

2∑

n+1
2

ai − HK + H − M

⎞

⎠ .

3Laplace [6], Théorie analytique des probabilités, Paris, Courcier, II Supplément, pp. 42–43.
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The last two formulas can be written as

1SH =1SM + 2
n

n+1
2 ± K−2

2∑

n+1
2

|ai − H| − 1
n

|H − M| (24)

where the sign is equal to + if H > M and − if H < M. In the same way, for n odd
and K odd:

1SH =1SM + 2
n

n+1
2 ± K−1

2∑

n+1
2

|ai − H| − 1
n

|H − M| (25)

For n even and K odd

1SH =1SM + 2
n

n+1
2 ± K−2

2∑

n+1
2 ± 1

2

|ai − H| − 1
n

|H − M| (26)

and, finally, for n even and K even

1SH =1SM + 2
n

n+1
2 ± K−2

2∑

n+1
2 ± 1

2

|ai − H| − 1
n

|H − M| (27)

Therefore, the simple average difference between all quantities and any quantity
in a series differs from the simple mean deviation between all quantities and the
median value for an amount that is not in relation with the rank difference of
individual quantities from the median. Hence, a simple mean deviation between any
quantities cannot be a precise measure of the mean difference between quantities.

23 It is also known, Gini continues, that the quadratic mean deviation from the
arithmetic mean is minimum with respect to the quadratic mean deviation from any
other quantity. Let H be any quantity, let A be the arithmetic mean, and let 2SH and
2SA be the respective quadratic mean deviation. We obtain:

2S2
H =2S2

A + (A − H)2 (28)

The quadratic mean deviation from any quantity is related to the quadratic mean
deviation from the median by the following:

2S2
H =2S2

M + (A − H)2 − (A − M)2 (29)

or:

2S2
H =2S2

M + (H − M)(H + M − 2A) (30)

The quadratic mean deviation from any quantity is different from the quadratic
mean deviation from the median and this, in turn, is different from the simple mean
deviation from the median by a quantity which is not in relation with the rank
difference of the single quantities from the median. Therefore, Gini concludes, the
quadratic mean deviation from the arithmetic mean cannot result, in general, in a
precise measure of the average difference between quantities.
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24 There is another easy way to express the mean difference and the mean
difference with repetition. The mean difference of all n quantities from the h−th
one is:

1Sh = 1
n

{
n∑

k=h

(ak − ah) +
h−1∑

k=1

(ah − ak)

}
(31)

which can also be expressed as:

1Sh = 1
n

{
2

n∑

k=h

ak −
n∑

k=1

ak − nah + 2(h − 1)ah

}
(32)

Let

Fh = n − h + 1; Th =
n∑

k=h

ak; T1 =
n∑

k=1

ak (33)

Therefore

1Sh = 1
n

(2Th − T1 + nah − 2Fhah) (34)

Let now h assume all values between 1 and n. The mean of the h = 1, 2, . . . , n
values 1Sh is the mean difference with repetition of the n quantities. It is immediate
to see that

�R = 1
n2

(
2

n∑

h=1

Th − nT1 + nT1 − 2
n∑

h=1

Fhah

)
(35)

From which we obtain the mean difference with repetition

�R = 2
n2

n∑

h=1

(Th − Fhah) (36)

and the mean difference without repetition

� = 2
n(n − 1)

n∑

h=1

(Th − Fhah) . (37)

For characters distributed along certain curves (here Gini does not specify what
curves), it is convenient to use the formulations in Eqs. 36 and 37 to calculate the
mean difference values.

25 We can think of infinite mean differences between n quantities, which corre-
spond to the infinite values that m can assume in the following Eq. 38:

m� = m

√√√√ 1
n(n − 1)

n∑

k=1

n∑

i=1

|ai − ak|m (38)
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and, analogously, we can think of infinite mean differences with repetition :

m�R = m

√√√√ 1
n2

n∑

k=1

n∑

i=1

|ai − ak|m (39)

Up to now we have considered the simple mean deviation and the simple mean
deviation with repetition with m = 1. We now consider the quadratic mean deviation
and the quadratic mean deviation with repetition that we obtain with m = 2.

These values of 2� and 2�R are in a simple relation with the quadratic mean
deviation from the arithmetic mean 2SA. Let 2Sh be a quadratic mean deviation of
the n quantities from the h−th quantity ah. This can be expressed as a function of the
quadratic mean deviation from the arithmetic mean 2SA:

2S2
h = 2S2

A + (A − ah)
2 (40)

Let h take all values from 1 to n. The mean of the n values of 2S2
h will correspond

to the mean of the squares of the n2 differences between each quantity and all n
quantities of the series. Therefore:

2�2
R = 1

n

n∑

h=1

2S2
h = 2S2

A + 1
2

n∑

h=1

(A − an)
2 = 2(2S2

A) (41)

from which

2�R = √
2(2SA) (42)

2� =
√

2n
n − 1

(2SA) (43)

4 On indices of variability of characters in the case of partial series
(Degli indici di variabilità dei caratteri nel caso di seriazioni parziali)

26 In this section, Gini discusses the issue of the partial observation of values of a
series, due to a random extraction of m observed values out of a complete series of
n values. The question is whether and how much the square mean difference from
the arithmetic mean, the mean difference and the mean difference with repetition
computed on the partial observations differ from the ones computed on the complete
series. Moreover, Gini stresses the difference between random extraction with
or without repetition. Measurement errors of physical quantities are of the first
kind while statistical observations of biological, anthropological, demographic or
economic phenomena are of the second type.

27–28 In the following two paragraphs, Gini demonstrates the relation between the
square mean difference from the arithmetic mean computed on partial observations
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(2S2
Ap

) and the square mean difference from the arithmetic mean computed on the
complete series (2S2

Ag
). In the case of partial observations generated by random

extraction with repetition:

2S2
Ap

= m − 1
m

2S2
Ag

(44)

In the case of partial observation generated by random extraction without
repetition:

2S2
Ap

= m − 1
m

n
n − 1

2S2
Ag

(45)

29 Next, Gini demontrates the relation between the mean difference computed on
partial observations (�p) and the mean difference computed on the complete series
(�g). In the case of partial observations generated by random extraction without
repetition:

�p = �g (46)

and for the mean difference with repetition:

�Rp = m − 1
m

n
n − 1

�Rg (47)

In the case of partial observations generated by random extraction with repetition,
we obtain for the mean difference:

�p = n − 1
n

�g (48)

and for the mean difference with repetition:

�Rp = m − 1
m

�Rg (49)

Therefore, Gini shows that to pass from the partial to the complete series, the
same coefficient applies to the square mean difference from the arithmetic mean and
to the mean difference with repetition (but not to the mean difference).

30 According to Gini, the purpose of the analysis of variability is twofold. On the
one hand, one can be interested in analyzing how the characters have changed within
the time and space boundaries to which the observed values belong. On the other
hand, we may be interested in checking the varying trend of the character. In the first
case, Gini talks of concrete variability (variabilità concreta), in the second case of limit
variability (variabilità limite). To obtain the limit variability value of the variability
indices computed on the complete series, one needs to use formulas 45, 46 and 47
replacing m with n and n with ∞.

5 On indices of variability of characters in the case of parallel series
(Degli indici di variabilità dei caratteri nel caso di seriazioni parallele)

31 Let A fk and B fk be the number of times characters A and B assume the intensity
xk, (k = 1, 2, . . . , s). The two series are equal if A fk =B fk, ∀xk. Two series are instead
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parallel if A fk = HB fk, where H is a constant. Two parallel series are in fact parallel
curves when represented in logarithmic scale.

32 Two parallel series have the same simple mean deviation, quadratic mean
deviation and mean difference with repetition. However, the less numerous series
has a larger mean difference.

33 Gini shows next the desirability of this last property. In two parallel series, he
says, the different values of xk have the same ratio (the series 1, 2, 2 has the same
ratio between 1s and 2s as the series 1, 1, 2, 2, 2, 2). But in the most numerous series,
there are more observations assuming the same value. Therefore, in this last case, the
variability should be lower.

6 On indices of variability of characters in some types of series (Degli indici
di variabilità dei caratteri in alcuni tipi di seriazioni)

34 In the following paragraphs, Gini determines the value of the simple mean
deviation, the quadratic mean deviation and the mean difference for a set of specific
series. The scope of this section is to point out whether a constant relation among
these measures occurs, or, on the contrary, the relation varies with the type of series.
And, for the same type of series, whether the relation among these measures is
constant or varies with the number of observations or the intensity of the character’s
variability.

35 The first type of series considered by Gini is the one for which the intensity
of the differences between each character and the median grows arithmetically
with the rank-distance between each character and the median. In other words,
‖ai − M‖ = Hdi,M where H � 1 is a constant. Therefore, the terms of the series form
an arithmetic progression with common difference H. The following formulas (50)–
(54) summarize the results.

2SM = H

√
n2 − 1

12
(50)

� = H(n + 1)

3
(51)

�R = H(n2 − 1)

3n
(52)

2� = H

√
n(n + 1)

6(n − 1)
(53)

2�R = H

√
n2 − 1

6
(54)

36 A series made of n consecutive natural numbers is a particular case of the
previous series where H = 1.
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37 The second type of series considered by Gini is the one where the intensity of
the differences between each character and the median grows geometrically with the
rank-distance between each character and the median. In other words:

‖ai − M‖ =
{

0 if di,M = 0
Hdi,M otherwise

The following formulas summarize the results. For n even:

1SM = 2
n

H
n+1

2 − H
1
2

H − 1
(55)

2SM =
√

2
n

Hn+1 − H
H2 − 1

(56)

� = 4
n(n − 1)

(n − 1)H
n+3

2 − (n + 1)H
n+1

2 + H
3
2 + H

1
2

(H − 1)2 (57)

�R = 4
n2

(n − 1)H
n+3

2 − (n + 1)H
n+1

2 + H
3
2 + H

1
2

(H − 1)2 (58)

and for n odd:

1SM = 2
n

H
n+1

2 − H
H − 1

(59)

2SM =
√

2
n

Hn+1 − H2

H2 − 1
(60)

� = 4
n(n − 1)

(n − 1)H
n+3

2 − (n + 1)H
n+1

2 + 2H
(H − 1)2 (61)

�R = 4
n2

(n − 1)H
n+3

2 − (n + 1)H
n+1

2 + 2H
(H − 1)2 (62)

38 In the previous examples, the n observations in the series took all different
values. Gini next considers examples of series where observations may take the same
values. Let x0, x1, . . . , xs be the s + 1 distinct values assumed by the n terms of the
series. Let xk+1 = xk + 1, and fk be the frequency of the value xk, for k > s. First Gini
assumes the following functional form:

fk = s!
k!(s − k)! (63)

which corresponds to the frequency curve of the Newton binomium (p + q)s, where
p = q, and, moreover, it has a limit-representation (for s big) in the Gaussian curve,
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or curve of random errors. The results are as follows (all results apply for each value
of s, except Eq. 66 which is valid for s big enough, and Eq. 70 which is valid for
s → ∞):

2SA=M =
√

s
2

(64)

1SA=M =
√

s
2π

(65)

2�R =
√

s
2

(66)

2� =
√

sn
2(n − 1)

(67)

�R = (2s − 1)!
22s−1(s − 1)!(s − 1)! (68)

� = n(2s − 1)!
(n − 1)22s−1(s − 1)!(s − 1)! (69)

�R = � =
√

s
π

(70)

From Eqs. 65, 66, 67, 68, 70, given the hypothesis that quantities are distributed
according to a Gaussian curve, Gini finds the following relations between variability
indices:

� = √
21SA (71)

� = 2√
π

2SA (72)

2� = √
22SA (73)

2� = 1√
π

1SA (74)

39 Gini considers next the example of a continuous series of xk terms, where x1

is the smallest value and xs is the biggest value. The number of times the character
assumes a value between xk and xk + dxk is described by:

fk = Vx−h
k dxk (75)

Now, let Fk = ∫ xs

xk
Vx−h

λ dxλ, xs be much bigger than xk, and h − 1 be greater and not
too close to 0, then

Fk = 1
h − 1

Vx−h+1
k (76)

After some algebraic manipulations, and under the hypothesis that (i) x1 is
much smaller than xs and (ii) h − 2 is greater than and not too close to zero,
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Gini determines the values for the mean difference and the mean difference with
repetition:

�R = 2
2h − 3

A (77)

� = 2
2h − 3

n
n − 1

A (78)

Moreover, Gini determines the value of the simple mean deviation, which, under
the hypothesis that (i) M is negligible with respect to xs and (ii) h − 1 is greater than
and not too close to zero, takes the form

1SM = h − 1
h − 2

(1 − 2
1

1−h )M =
(

2
1

h−1 − 1
)

A (79)

and, under the hypothesis that (i) A is negligible with respect to xs and (ii) h − 2 is
greater than and not too close to zero, the simple mean deviation takes the form

1SM =
(

2
1

h−1 − 1
)

A. (80)

Under the hypothesis that (i) A is negligible with respect to xs and (ii) h − 2 is
greater than and not too close to zero, Gini defines the simple deviation from the
arithmetic mean as

1SA = 2(h − 2)h−2(h − 1)1−h A (81)

and the square mean deviation from the arithmetic mean and the square mean
difference with repetition as

2SA = 1√
(h − 1)(h − 3)

A (82)

2�R =
√

2
(h − 1)(h − 3)

A (83)

40 Gini suggests to use Eqs. 78–81 for computing the variability of all fiscally
assessed incomes because he noted that the various hypotheses underlying these
equations were verified empirically and because the distribution of these incomes
(above a given value) is well approximated by the curve described by Eq. 75 (a
finding attributed by Gini to Pareto). Gini gives some examples using data on income
levels in Austria (1900), Amsterdam (1906–1907) and in the Reign of Saxony (1892)
to back up these arguments.

41 Next, Gini notes that all the variability indexes discussed are negatively cor-
related with h and that the expected difference between incomes of two random
individuals varies across different times and countries from 70% to 150% of the mean
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income. These are extremely high values considering that in the case of maximum
inequality, when just one individual owns all country’s income, the mean difference
is 200% of mean income.

42 In 1895, Pareto had observed that the distribution of incomes can be ap-
proximated by the curve described in Eq. 75. He defined α = h − 1 as income
distribution index, assuming that inequality would change proportionally with α.
Moreover, since values of α empirically determined had not changed much along
time and across countries at the time Pareto performed his analysis, he concluded
that the distribution of incomes is constant and independent of any social, political
or economic influence. Gini agrees with the definition of α given by Pareto, but he
disagrees with the second conclusion: the distribution of incomes, he affirms, is very
dissimilar in time and space.

43 Gini proposes a new formula to approximate the distribution of fiscally assessed
incomes, different from Eq. 76, which, he says, fits empirically better the true data

Fk = 1
K

Tδ
k (84)

where δ and K are constants, and Tk = ∫ xs

xk
Vx1−h

λ dxλ. Gini defines δ as the concen-
tration index of global incomes, since Eq. 84 can be rephrased as:

Fk

F1
=

(
Tk

T1

)δ

(85)

and therefore δ is the constant to which to elevate the fraction of highest incomes in
order to obtain the fraction of individuals who owns these incomes.

44 In this paragraph, Gini examines the relation between formula (84) and formula
(76). Under given circumstances, which are seldom satisfied, a constant relation exists
between the two formulas. Gini demonstrates the desirability of using Eq. 84 over
Eq. 76 in a number of circumstances, and provides practical examples using data on
rents, wages, and wealth.

45 Given a series of n quantities with arithmetic mean A, inequality is maximum
when one quantity in the series is equal to T = An, and the other n − 1 quantities
are equal to 0. In this case:

1SA = 2
n − 1

n
A (86)

1SM = A (87)

2SA = √
n − 1A (88)

2SM = √
nA (89)

� = 2A (90)

2� = √
2nA (91)

46 Inequality is minimum if all quantities in the series are equal. Therefore: 1SA =
2SA = 1SM = 2SM = � = 2� = 0.
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47 Comparing the mean difference and the simple or quadratic deviations in the
different types of series considered so far, sometimes a constant relation applies.

In the case of minimum inequality (paragraph 46) it is:

� = 1SM = 1SA = 2SM = 2SA.

In the case of the curve of random errors (paragraph 38) the relations are exactly:

� = 1.414 1SM = 1.414 1SA

� = 1.128 2SM = 1.128 2SA.

In the case of arithmetic progression (paragraph 35), and for n big enough:

� = 1.333 1SM = 1.333 1SA

� = 1.306 2SM = 1.306 2SA.

In the case of hyperbolic curve (paragraph 39), these relations vary as the h power
of xk, changes. For n big enough:

� = 1SM
2

(2h − 3)(2
1

h−1 − 1)

� = 1SA
(h − 1)h−1

(2h − 3)(h − 2)h−2

� = 2SA
2
√

(h − 1)(h − 3)

2h − 3

As h grows, the ratios �
1SM

, �
1SA

and �
2SA

become smaller.
In the case of maximum inequality (paragraph 45), the following relation is

constant:

� = 21SM

For n big enough, the following constant relation applies between the mean
difference and the simple mean deviation form the arithmetic mean:

� = n
n − 1

1SA.

Instead, relations between the mean difference and the quadratic mean deviation
from the mean and the median value grow as n becomes larger. Thus

� = 2√
n − 1

2SA

� = 2√
n

2SM.

Moreover, in the case of deviations growing geometrically with their rank-
distances (paragraph 37), the relations between variability indexes are functions of
H and n.

Gini concludes that the relations between the mean difference, the simple mean
deviation and the quadratic mean deviation from the median and the simple and
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quadratic mean deviation from the arithmetic mean vary with the type of series,
and—within the same type of series—they may be functions of constant values.

48 Gini gives some examples of discordancies of results obtained with different
variability indexes using data extracted from the Parisian meat market and the
cephalic indexes of Italian conscripted soldiers.

7 On the most convenient index to measure the variability of characters
(Dell’indice piú conveniente per misurare la variabilità dei caratteri)

49 Given that a constant relation exists between different variability indices when
observations are infinitely numerous, the choice of a specific index to compare
variability for different series of infinite observations is irrelevant. But, Gini remarks,
the relation between indices varies when the number of observations is limited,
which, in practice, is the most frequent case. Therefore, Gini continues, the choice
of the index becomes relevant. In particular, it depends on whether the researcher
is interested in evaluating the limit-variability (of the character’s infinitely extended
series of observations) or the concrete variability (based on time- and space-limited
observations). Physicists and astronomers are interested in the exact measure they
can infer from n different observations: they are therefore interested in evaluating
the limit-variability. In other disciplines the scope of the analysis on the same set
of observations can be different. If the aim is to infer the limit-variability, the best
index is the quadratic mean deviation, which has the higher probability to return the
result obtained on an infinitely large number of observations. Instead, if the aim is to
measure the concrete-variability, the aim of the research itself should lead towards
the choice of the best index.

50 As pointed out already in paragraph 11 the scope of the analysis is different
if (i) the series is made of true different measures or (ii) the series is made of
different observations affected by measurement error of a true, unknown, measure.
In the second case, the aim of the variability analysis is to determine how much the
observed measures are different from the true measure. Hence, the arithmetic mean
of deviations (or the simple mean deviation) is the most appropriate tool, since it rep-
resents the expected value of the difference between the true measure and one of the
observed measure, randomly chosen. In the first case, instead, the aim of the analysis
is to determine how much the true observed measures are different from each other.
The most appropriate tool in this case is the arithmetic mean between all possible
differences that can be found between the quantities (i.e. the mean difference), since
it represents the expected value of the difference between two randomly chosen
quantities. In both cases, the underlined assumption is that deviations and differences
have an importance which is proportional to their magnitude. Even if, Gini says,
this assumption is often true, it is possible that deviations and differences have an
importance which is more or less than proportional to their magnitude. Therefore,
Gini continues, it may be appropriate to use a weighted average of deviations or
differences.

51 In practice, to compute such indices, the researcher needs to know either the
true value (ii) or the value of all possible observations (i). But this information is not
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always known. When studying the variability of approximate measures of the same
quantity, the analysis aims at finding a way to determine the expected difference
between the surveyed measures and the true unknown measure. Assuming that the
expected value of the positive measurement errors is equal to the expected value of
the negative measurement errors, the arithmetic mean of the surveyed measures is
the expected value of the true measure. Therefore, the analysis of variability can be
performed by replacing the true unknown measure with the arithmetic mean of the
surveyed ones. This procedure is not free from consequences on the simple mean
deviation, and Gini remarks that a correction coefficient had not been computed to
translate the value of the simple mean deviations from the arithmetic mean to the
expected value of the simple mean deviation from the true value. Such a correction
had instead been computed for the quadratic mean deviation. Let n be the number
of observed quantities, the expected value of the quadratic mean deviation of the
n quantities from the true value is equal to the quadratic mean deviation from
their arithmetic mean times n

n−1 . Gini underlines that both indices (simple mean
deviation and quadratic mean deviation from the arithmetic mean) should be used
together since neither of the two can be considered better than the other and both
have shortcomings. The simple mean deviation from the arithmetic mean does not
consider the replacement of the true value with the arithmetic mean while the square
mean deviation does not impose a weight to errors.

52 Next, Gini considers the other alternative (i), where each surveyed measure
corresponds to an existing true quantity. Correspondence does not mean coinci-
dence, since measurement errors are always possible. Often, measurement errors are
negligible in comparison to differences occurring between quantities. In this case,
the mean difference between surveyed quantities is the best index of the characters’
variability. However, sometimes measurement errors are not negligible, and the
mean difference between surveyed quantities does not coincide with the mean
difference between true measures. Note that errors can be accidental (assuming that
the error curve is symmetric) or systematic. In the first case, Gini demonstrates that
the mean difference between surveyed quantities is larger than the mean difference
between true quantities. Moreover, accidental measurement errors have a negligible
influence on the simple mean deviation, but a large influence on the mean difference
between quantities. Gini suggests to use both indices when a series shows significant
measurement errors or when one needs to compare two series of which one has
greater measurement errors than the other.

In the second case, when measurement errors are systematic, there is not a unique
rule. Gini gives two examples. If errors are such that all quantities are overstated or
understated by a constant K, then simple mean deviation, quadratic mean deviation
and mean difference are equivalent for the surveyed and the true quantities. If
errors are such that all quantities are overstated or understated proportionally to
their magnitude, then simple mean deviation, quadratic mean deviation and mean
difference are equivalent if applied on the logarithm of the surveyed quantities or on
the logarithm of the true quantities.

53 Some series are in between series where the quantities correspond to true
measures and series where quantities are approximative expressions of the same
quantity. These are series where quantities not only correspond to true values,
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but they can also be interpreted as aberrant expressions diverging from the typical
measure. Gini gives the example of heights in a population of a specific race.
Each measure corresponds to one individual true height, but this height is also the
individual departure from the typical height of the race. Again, it is the scope of
the analysis which leads to the choice of the most appropriate index of variability.
Another example helps understanding the issue. The variability of working ability
across individuals in some population can be interpreted as one of the determinants
of the economic inequality between individuals. If this is the case, the researcher
is interested in evaluating the individual differences in working ability and the mean
difference is the most appropriate index to serve that purpose. On the other hand, the
variability of working ability of different individuals is a measure of the homogeneity
of types in the population. In this case, Gini suggests the use of the arithmetic mean of
deviations from the typical working ability, which can be found in the most frequent,
normal or modal value.

54 Sometimes it is not possible to know all possible values of a series, but quantities
are grouped in categories, which can be small or large. If categories are small, (as
in the case of heights which are approximated at centimeters), no particular issue
arises, since each quantity can be considered as the upper limit, or the lower limit,
or the partial sum of limits of the category. But quantities are often grouped in large
categories which may or may not be of the same dimension. In this case, computing
the mean difference, the square mean difference and the square mean deviation
becomes impossible. It is often still possible to compute the simple mean deviation
from the arithmetic mean and from the median, when the arithmetic mean, the
median, the sum and the number of all quantities above and below the arithmetic
mean and the median are known. Even if the number of quantities within each
category is unknown, it is still possible to make a direct approximation of the simple
mean deviation from the mean and the median or the square mean deviation from
the mean, provided that the lower limit of the lower category and the upper limit
of the upper category are known, and that the hypothesis of uniform distribution of
quantities within categories is reasonable.

55 In this section, Gini considers also the case where data are grouped into large
classes, where only the arithmetic mean of each class is known. In this case, measures
of variability cannot be estimated directly but, if quantities follow approximately
the distribution described in formula (76), they can be estimated as described in
paragraphs 49 and 50.

8 On the comparisons between variability of characters with different average
values (Del confronto tra la variabilità dei caratteri che presentano
valori medi dif ferenti)

56–61 Gini spends a few paragraphs trying to answer the question of whether, in
addition to the absolute value of the differences, also the magnitude of the characters’
values should play a role in the analysis of variability. He concludes that a unique
solution does not exist; instead, different solutions may apply to different cases
according to the nature and the purpose of each research. If the averages of the
characters’ values are numerically different because of the use of a different unit of
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measurement for quantities of the same nature (e.g. income expressed in different
currencies), index of absolute differences cannot be comparable, and the different
unit of measure must be homogenized. The true problem arises when we aim to
compare quantities of different nature, for which a unique unit of measurement
cannot be found. It is not always satisfactory, in fact, to simply use the ratio between
the absolute index of variability and the average value of the different characters.
Therefore, neither the absolute approach nor the relative approach seem to be
applicable to all situations.

9 Indices of oscillation and evolution (Indici di oscillazione e di evoluzione)

62 Whenever a character assumes different intensities successively rather than
simoultaneously, the analysis of variability may take into account also the order of
appearance. Gini makes use of an example where we observe the annual price of an
item for n consecutive years. The aim of the study can be different, he says. First,
it may be necessary to determine the expected error in the estimate of the price
in one year starting from the information on the price in some other year. In this
case, the most appropriate tool is the arithmetic mean of the n(n − 1) differences
between all annual prices. Second, the object of analysis may be to find the expected
error in determining the price in one year given the price in the previous year. The
most appropriate index would be the arithmetic mean of n − 1 differences between
consecutive prices. Last, it may be interesting to know if and how much the price
in some year is larger or smaller than the expected value in the subsequent year. In
this case, the index to be used is the sum of all n − 1 possible differences between
consecutive terms, divided by n − 1, i.e. the difference between the first and the
last term, divided by n − 1. The arithmetic mean of consecutive successive values
measures the oscillation of these values over time. Gini defines this index oscillation
index and he labels it O. The algebraic difference between the first and the last term
divided by n − 1 measures the increment or decrement of the observed character
over the time-span considered. Gini defines this index evolution index and he labels
it E. If all differences between consecutive values are the same, then O = |E|,
otherwise O > E. Gini remarks that, in the same way as with the variability indices,
also for the oscillation index it may be more appropriate to use a weighted average
instead of the arithmetic mean. Moreover, the same argument about relative and
absolute indices used for variability also applies to evolution and oscillation indices.

63 Normally, the oscillation index (O) of a series of n elements is different from
the mean difference (�) computed on the same series. When the oscillation index
is bigger, it means that differences between consecutive quantities are larger, on
average, than the differences between all quantities, and therefore the character
has a tendency to diverge. When the oscillation index is smaller than the mean
difference, it means that differences between consecutive quantities are smaller, on
average, than the differences between all quantities, and therefore the character has
a tendency to converge. Gini defines as R = �

O the ratio which explains the relations
between some character’s consecutive intensities. He gives an example using data
about prices of different kinds of meat in Paris for the years 1867–1910.
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