A Appendix

A.1 Additional tables and figures — Institutional context
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FIGURE A.1. CHILDCARE ARRANGEMENTS FOR CHILDREN BETWEEN 0 AND 6 - 2002/2013

Notes: The figure shows the childcare arrangements families adopt prior to the introduction of the reform, to
take care of their children when these are not in school on Wednesday. The sample comprises 8461 parents
with children aged 0 to 6 interviewed in 2002, 2007, and 2013 - prior to the introduction of the reform.

Source: CNAF survey on childcare arrangements.
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Mothers whose youngest child is 6-11
by type of household
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Sample: Working women whose youngest child is between 6-11 years old, excluding school
personnel.
Obs: College degree=5833, No college degree=7119

Mothers whose youngest child is 12-14
by type of household
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Sample: Working women whose youngest child is between 12-14 years old, excluding school
personnel.
Obs: College degree=2296, No college degree=3866

FIGURE A.2. PROPORTION OF WOMEN WORKING ON WEDNESDAY BY TYPE OF HOUSEHOLD -
PRE-REFORM PERIOD

Notes: The figures report bar graphs representing the percentage of women working on Wednesday among
mothers whose youngest child is between six and eleven, at the top, and mothers whose youngest child is
between twelve and fourteen, at the bottom. In each graph, we consider women with at least a college
degree separately from those without college degree. Within each of these two groups, we compare women
whose educational level is strictly higher than their partner’s, labelled "W edu > M edu", with women whose
educational level is at most equal to their partner’s, called "W edu < M edu". All figures refer to the pre-
reform period, and we exclude mothers working in schools when computing them. On each bar, we also report
95 percent-confidence intervals. Finally, for each educational level, we indicate the results of T-tests for the
difference in means between the two types of household.

Source: French Labor force Survey 2009-2013.
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FIGURE A.3. WOMEN REPRESENTATION ALONG THE MALE HOURS DISTRIBUTION

Notes: The figure reports the relationship between the share of female workers and the average number of
hours worked by occupation (3-digit classification). The graph is constructed using a representative sample of
the French matched-employer-employee data set for the period 2009-2012.

Source: French matched-employer-employee database 2009-2012 (DADS).
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Gender wage gap along the male hours distribution
Pre-reform period
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FIGURE A.4. GENDER WAGE GAP BY OCCUPATION

Notes: The graph depicts the gender wage gap by occupation (3-digit classification). The top graph reports
the relationship between the residual gender wage gap and the average number of hours worked by occupation.
The bottom graph reports the relationship between the residual gender wage gap and (log) male average annual
earnings by occupation. The residual gender wage gap corresponds to the female coefficient in a regression of
(log) annual earnings on (log) annual hours worked, age, age squared, level of education and a female dummy,
estimated separately for each 3-digit occupation. The graph is constructed using a representative sample of
the French matched-employer-employee data set for the period 2009-2012.

Source: French matched-employer-employee database 2009-2012 (DADS).
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Proportion of mothers working part-time
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FIGURE A.5. TRENDS IN MOTHERS’ LABOR SUPPLY MEASURES BY AGE OF THE YOUNGEST CHILD

Notes: The graphs show the evolution of different labor supply measures over the period 2009-2016. The
sample includes all mothers aged 18-55 whose youngest child is between the age of six and fourteen, with the
exception of those working in schools. We represent in red treated mothers, that is, those whose youngest child
is between six and eleven years old. Mothers whose youngest child is of middle-school age, or control mothers,
are represented in blue. The vertical bar named "A" corresponds to April 2013, when municipalities announce
in which year they will introduce the reform. The bar called "I1" corresponds to September 2013, when 20
percent of municipalities implement the reform. The bar labelled "I2" corresponds to September 2014, when
the rest of municipalities implement the reform. Finally, we report 95-percent confidence intervals.

Source: French Labor Force Survey 2009-2016.
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TABLE A.1 — DESCRIPTIVE STATISTICS - YOUNGEST CHILD BETWEEN 6-11

No college N College degree N P-value

degree or more T-test
Hours worked per week 33.26 40,491 36.28 24,625 0.00
Part-time 38.52 42,936 32,07 24,625 0.00
Days worked per week 4.74 40,491 4.63 24,625 0.00
Work on Wednesday 59.33 9,043 58.23 6,927 0.16
Work on Saturday 29.05 9,043 15.99 6,927 0.00
Monthly wages 1,277 13,181 2,110 7,674 0.00

Non-managerial N Managerial N P-value

occupations occupations T-test
Hours worked per week 33.70 55,179 38.3 9,894 0.00
Days worked per week 4.7 55,179 4.66 9,894 0.24
Part-time 37.72 55,179 26.94 9,894 0.00
Work on Wednesday 59.23 13,211 57.27 2,716 0.06
Work on Saturday 26.12 13,211 10.16 2,716 0.00
Monthly wages 1,369 17,746 2,811 3,098 0.00

Low W High M N High W Low M N P-value

T-test
Hours worked per week 33.98 31,779 35.16 23,235 0.00
Part-time 40.06 31,779 33.23 23,235 0.00
Days worked per week 4.66 31,779 4.7 23,235 0.00
Work on Wednesday 56.26 7,571 60.09 5,383 0.00
Work on Saturday 24.25 7,571 22.16 5,383 0.00
Monthly wages 1,553 10021 1,666 6560 0.00

Firm size < 20 N Firm size >20 N P-value T-test

T-test
Hours worked per week 34.86 12,824 34.29 52,292 0.00
Part-time 35.17 12,824 36.3 52,292 0.02
Days worked per week 4.78 12,824 4.68 52,292 0.00
Work on Wednesday 60.34 3,577 58.42 12,393 0.00
Work on Saturday 27.84 3,577 22.1 12,393 0.00
Monthly wages 1,502 3,868 1,602 16,987 0.00

Public sector N Private sector N P-value
Hours worked per week 34.59 15,495 33.26 43,628 0.00
Part-time 36.43 15,495 37.82 43,628 0.00
Days worked per week 4.56 15,495 4.68 43,628 0.00
Work on Wednesday 53.41 3,326 59.3 10,933 0.00
Work on Saturday 15.27 3,326 21.09 10,933 0.00
Monthly wages 1,703 5,396 1,539 15,370 0.00

Notes: The table reports pre-reform summary statistics for mothers whose youngest
child is between six and eleven. The figures are reported separately for the sub-
groups indicated on top of each table section. In the last column of the table,
we report the p-value of the T-tests for the difference in means between the two

subgroups.

Source: French Labor Force Survey 2009-2013.
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TABLE A.2 — DESCRIPTIVE STATISTICS - YOUNGEST CHILD BETWEEN 12-14

No college N College degree N P-value

degree or more T-test
Hours worked per week 33.69 21,435 37.55 9,423 0.00
Part-time 37.43 21,435 27.29 9,423 0.00
Days worked per week 4.81 21,435 4.73 9,423 0.00
Work on Wednesday 66.94 5,026 66.83 2,815 0.92
Work on Saturday 28 5,026 15.59 2,815 0.00
Monthly wages 1,322 6,938 2,344 2,864 0.00

Non-managerial N Managerial N P-value

occupations occupations T-test
Hours worked per week 34.06 26,357 39.65 4,475 0.00
Part-time 36.44 26,357 22 4,475 0.00
Days worked per week 4.79 26,357 4.78 4,475 0.67
Work on Wednesday 66.88 6,563 66.88 1,252 0.99
Work on Saturday 25.93 6,563 11.01 1,252 0.00
Monthly wages 1,396 8,412 2,979 1,384 0.00

Low W High M N High W Low M N P-value

T-test
Hours worked per week 34.49 15,167 35.60 8,931 0.00
Part-time 38.66 15,167 32.32 8,931 0.00
Days worked per week 4,77 15,167 4,78 8,931 0.25
Work on Wednesday 65.84 3,793 68.63 2,371 0.02
Work on Saturday 24.51 3,793 22.51 2,371 0.07
Monthly wages 1,564 4,747 1,741 2,829 0.00

Firm size < 20 N Firm size >20 N P-value T-test

T-test
Hours worked per week 35.43 6,212 34.73 24,646 0.00
Part-time 35.05 6,212 34.15 24,646 0.18
Days worked per week 4.86 6,212 4.76 24,646 0.00
Work on Wednesday 66.99 1,756 64.47 6,085 0.00
Work on Saturday 30.62 1,756 21.51 6,085 0.00
Monthly wages 1,849 2,309 1,642 7,953 0.00

Public sector N Private sector N P-value
Hours worked per week 35.07 7,542 33.48 20,509 0.00
Part-time 31.83 7,542 37.2 20,509 0.00
Days worked per week 4.68 7,542 4.75 20,509 0.00
Work on Wednesday 58.83 1,789 68.60 5,331 0.00
Work on Saturday 16.76 1,789 21.23 5,331 0.00
Monthly wages 1,786 2,603 1,555 7,165 0.00

Notes: The table reports pre-reform summary statistics for mothers whose youngest
child is between twelve and fourteen. The figures are reported separately for the
subgroups indicated on top of each table section. In the last column of the table,
we report the p-value of the T-tests for the difference in means between the two

subgroups.

Source: French Labor Force Survey 2009-2013.
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A.2 Alternative samples

TABLE A.3 — LABOR SUPPLY RESPONSE TO THE REFORM - INCLUDING SCHOOL PERSONNEL

(1) (2) 3) o

Labor force  Part-time Hours worked Days worked

participation per week per week
Treatment 0.00628 -0.0194** 0.344* 0.0401**
(0.00552) (0.00916) (0.208) (0.0178)
Youngest child between 6-11  -0.0144*** 0.0351*** -0.775%* -0.0940***
(0.00380) (0.00642) (0.152) (0.0115)
Observations 193614 152052 152052 152052
R? 0.162 0.143 0.149 0.131
F 38.92 20.77 23.81 10.04
Pre-treatment means 0.858 0.356 34.39 4.666

Notes: This table shows the coefficients capturing the effect of the reform, obtained from
the estimation of regression 1. The different columns refer to the outcome considered,
being respectively labor force participation, column 1, the decision to work part-time,
column 2, number of hours worked per week, column 3, and number of days worked per
week, column 4. All regressions include age and age square, marital status, number of
children, a dummy for immigration status, municipality and wave fixed effects, dummies
for the level of education, and a dummy for the presence of other members in the
household. The estimation sample comprises all mothers whose youngest child is between
six and fourteen years old, including school personnel. In column 2, 3, and 4, we only
consider mothers who are employed at the time of the interview.

*#* Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
Source: French Labor Force Survey 2009-2016.
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A.3 Alternative mechanisms

TABLE A.6 — LABOR SUPPLY RESPONSE TO THE REFORM - TENURE AND TRAINING

(1) (2)

Tenure in the company Contract duration

3)

On the job training

Treatment 0.318* 0.120 0.0106
(0.174) (0.134) (0.0069)
Youngest child between 6-11 -0.403*** -0.161 -0.0022
(0.129) (0.142) (0.0037)
Observation 132,824 10,433 133,979
R? 0.247 0.573 0.167
F 126.9 20.75 80.47
Pre-treatment mean 9.949 1.178 0.163

Notes: The table shows the coefficients capturing the effect of the reform, obtained from the

estimation of regression 1 on tenure and training. The first column refer to the tenure in the

company, the second to contract tenure, both measured in years, the last outcome measures on-

the-job training. We present the results for the sample of all mothers, aged 18 to 55, employed

at the time of the interview whose youngest child is between six and fourteen years old, with

the exception of those working in schools. Regressions include age and age square, marital

status, number of children, a dummy for immigration status, municipality and wave fixed effects,

dummies for the level of education, and a dummy for the presence of other members in the

household.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.

* Significant at the 10 percent level.
Source: French Labor Force Survey 2009-2016.
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A.4 Multiple outcomes and subgroup analysis

Measuring the impact of the reform on multiple outcomes, as well as heterogeneous treatment
effects by subgroup can raise the probability of a Type I error. We take a number of steps to
ensure that our results are not just the result of data mining. We first present estimates of the
different outcomes with adjusted p-values to account for multiple hypothesis testing. We also
use modern machine learning tools and provide a non-standard approach to treatment hetero-
geneity building on recent applications in the context of randomized controlled experiments

(Davis and Heller 2017, Bertrand et al. 2017).

A.4.1 Multiple hypothesis testing

Table A.9 and Table A.10 present estimates of the effect of the reform on labor supply outcomes
obtained from the estimation of regression 1 for which we further provide adjusted p-values
to account for multiple hypothesis testing.

The method we use is the False Discovery Rate (FDR) control, or the expected proportion
of all rejections that are type-I errors, which involves a p-value adjustment less severe than
some other methods such as the Familywise Error Rate control or the Bonferroni correction, as
long as one is willing to tolerate some type-I error in exchange for a less stringent adjustment.
Specifically, we use the sharpened two-stage g-values introduced in Benjamini, Krieger and

Yekutieli (2006) and described in Anderson (2008).
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A.4.2 Subgroup analysis using machine learning

The goal of this analysis is to confirm differences in predicted impacts of the reform across
occupations and educational levels. We build upon recent applications of machine learning
techniques in the context of randomized control trial studies (Davis and Heller 2017, Bertrand
et al. 2017) to go one step further in analyzing heterogeneity in the treatment effect of the
reform. We follow the causal forest algorithm of Athey and Imbens (2016) and Wager and
Athey (2018) in order to identify expected impact of the reform conditional on a set of co-
variates.?0 Causal forest can be particularly useful, relative to some other machine learning
algorithms, such as a lasso, because it allows for non-linearities and automatic detection of
interactions.

We follow Bertrand et al. (2017) and set the parameters as displayed in Table A.13. We
apply our model on the sample of mothers whose youngest child is between 6 and 14, who are
employed at the time of the interview, and for whom wages are reported, with non-missing
values for baseline covariates and outcomes of interest (N=21,561). Given our sample size,
we choose a = 50% for the share of the sample used to construct the model (the training
sample) and the one used for inference (the test sample). We adapt the algorithm so that the
determination of the training sample is stratified by our treatment variable and by municipality
(treatment *municipality). Features included in the model are presented in Table A.14.

The general idea is that we first use the model in order to predict a women’s expected
treatment effect for each outcome based on her covariates. Following the methodology applied
by Davis and Heller (2017) and Bertrand et al. (2017), we then investigate whether predictions
of the model do capture treatment heterogeneity in our data. We create a dummy variable
equal to one if the mother has a predicted treatment effect on labor market outcome in the top
50% or the bottom 50% of predictions. We then compare the sociodemographic characteristics
of treated mothers in the top and the bottom 50% of the distribution of predicted effect, and

we see which dimension stands out. Therefore the descriptive statistics are computed on the

36We use the R function causal_forest from the packages causalTree, randomForestCI, hte and
ElasticSynth (Athey and Imbens 2016, Wager and Athey 2018).

A17



restricted sample of mothers whose youngest child is between 6 and 11.

Results of this balancing test for the conditional average treatment effect on part-time rate
and the log real net hourly wage are presented in Table A.11 and Table A.12 respectively. We
provide P-value adjusted for multiple hypothesis testing. Note that for Table A.11, given that
the impact of the reform on the probability of working part-time is negative, belonging to the
bottom 50% of the effects means experiencing the highest decrease. Overall, these results are
consistent with the heterogenous effects described in Section 3. The share of mothers with at
least a college degree is significantly higher in the bottom 50% of the distribution of predicted
conditional effects on part-time (higher effects) than in the top 50%. We observe the reversed
pattern for high school graduates: they are less likely to be part of the group most affected by
the reform. Single women are less likely to experience a high decrease in part-time rate as well,
although they work on average more hours than married mothers in the baseline. Finally, we
do not observe sharp geographic differences across these groups: the share of mothers living in
cities located in urban areas, or where the reform was implemented in 2013 rather than 2014n
does not differ significantly between the two groups.

Turning to the impact on hourly wage in Table A.12, we observe again that mothers with
at least a college degree are significantly more represented in the top 50% of the distribution
of predicted conditional effects on hourly wage (higher effects) than in the bottom 50%. We
observe another pattern of differences across occupations: women working in managerial occu-
pations and intermediary occupations are more likely to be in the top 50% of the distribution
of predicted conditional effects on hourly wage, while employees and elementary occupations
are overrepresented at the bottom 50% of the conditional average treatment effects.

Overall, this approach confirms qualitatively the patterns of heterogeneity we observed by

educational levels and across occupations.
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TABLE A.11 — CONDITIONAL AVERAGE TREATMENT EFFECT - PART-TIME

Bottom 50% Top 50% Difference P-value
of predicted effects of predicted effects
Age 41.21 40.54 -0.668 0.001
College degree or more 0.665 0.283 -0.382 0.001
High school graduates 0.261 0.564 0.303 0.001
Single 0.040 0.171 0.131 0.001
Immigrant 0.123 0.073 -0.050 0.001
Farmers 0.002 0.000 -0.002 0.137
Craftsmen, small business 0.000 0.000 0.000 0.397
Managerial occupations 0.003 0.003 -0.000 0.869
Intermediary occupations 0.369 0.031 -0.338 0.001
Employees 0.247 0.246 -0.001 0.973
Elementary occupations 0.285 0.615 0.330 0.001
Reform in 2013 0.289 0.290 0.000 0.973
Urban area 0.683 0.739 0.056 0.001
N 2,091 2,091 Total for estimation = 21,561

Notes: The table shows the descriptive statistics of treated mothers’ characteristics according to the

predicted effect the reform has on the probability of working part-time. The conditional average

treatment effect is computed using the R function causal_forest (Athey and Imbens 2016, Wager

and Athey 2018). The estimation sample comprises mothers whose youngest child is between 6 and

14, who are employed at the time of the interview, and for whom wages are reported, with non-missing

values for baseline covariates and outcomes of interest. Parameters and features of the model are

presented in Table A.13 and Table A.14 respectively. The descriptive statistics are then computed on

the restricted sample of mothers whose youngest child is between 6 and 11. We report the P-value of

the T-test adjusted for multiple hypothesis testing. Note that given that the effect on the probability

of working part-time is negative, belonging to the bottom 50% of the effects means experiencing the

highest decrease.

Source: French Labor Force Survey 2009-2016.
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TABLE A.12 — CONDITIONAL AVERAGE TREATMENT EFFECT - LOG REAL HOURLY WAGE

Bottom 50% Top 50% Difference P-value
of predicted effects of predicted effects
Age 41.04 40.72 -0.317 0.063
College degree or more 0.311 0.637 0.327 0.001
High school graduates 0.542 0.283 -0.259 0.001
Single 0.090 0.120 0.030 0.004
Immigrant 0.112 0.084 -0.028 0.005
Farmers 0.000 0.002 0.002 0.128
Craftsmen, small business 0.000 0.000 0.000 0.353
Managerial occupations 0.001 0.005 0.004 0.021
Intermediary occupations 0.028 0.372 0.343 0.001
Employees 0.298 0.196 -0.102 0.001
Elementary occupations 0.604 0.296 -0.308 0.001
Reform in 2013 0.302 0.277 -0.025 0.095
Urban area 0.721 0.701 -0.020 0.191
N 2,091 2,091 Total for estimation = 21,561

Notes: The table shows the descriptive statistics of treated mothers’ characteristics according to

the predicted effect the reform has on their hourly wage. The conditional average treatment effect

is computed using the R function causal_forest (Athey and Imbens 2016, Wager and Athey

2018). The estimation sample comprises mothers whose youngest child is between 6 and 14, who are

employed at the time of the interview, and for whom wages are reported, with non-missing values for

baseline covariates and outcomes of interest. Parameters and features of the model are presented in

Table A.13 and Table A.14 respectively. The descriptive statistics are then computed on the restricted

sample of mothers whose youngest child is between 6 and 11. We report the P-value of the T-test

adjusted for multiple hypothesis testing.
Source: French Labor Force Survey 2009-2016.

TABLE A.13 — PARAMETERS FOR CAUSAL FOREST

Parameter

Value

Number of trees
in the forest
B

10,000

Minimum number
of treatment and control
units per leaf

10

Fraction of the sample used to
build each tree

p

0.5

Fraction of the subsample
used for training

4]

0.5
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TABLE A.14 — FEATURES FOR CAUSAL FOREST

Variable Type
Age Continuous
Age square Continuous
Marital status Binary
Number of children (2, 3 or more) Binary
Immigration status Binary
Municipality fixed effects Binary
Wave on interview fixed effects Binary
Level of education (3 categories) Binary
Type of occupations (6 categories) Binary
Presence of other young members in the household Binary
Presence of other older members in the household Binary
Urban area Binary
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A.5 Visualisation of the impact of the reform

| ]

B B’

- > Aw(ei)
0 Share bunching under s
>

Share bunching under s’

This diagram plots the relationship between a change in the time the child spends at school
s and period 1’s optimal labor supply according to the mother’s level of education. A, is a
mapping of e; (continuous and increasing) therefore A,, is rank-preserving of e;. B represents
the mother with the lowest level of education e; who is working s rather than her optimal h] in
the first period. With the reform, the constraint moves from s to s’. This shift translate into
B — B’: the level of education of the least educated mother working s’ rather than her optimal
hi in the first period has increased. The line in blue represents the share of mothers who were
bunching under s and who can work their optimal A} under s’. We can then characterize the

welfare gains associated to the reform according to mothers’ level of education.

Welfare gains The gain in welfare can be characterized by:3"

e <B’—B>5qum<hi> Vi) (1 —B’)jﬁ[vus’) Vis)]

Mothers bunching under s Remaining bunchers under s’

where Vi (.) is the indirect utility function in period 1.

37 Again here we do not make any assumption on the value the mother attributes to the time spent with her
child.
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A.6 Proofs of the theoretical model
A.6.1 Optimal labor supply

The maximization problem in period 2 is straightforward. Given optimal labor supply in
period 2 (h5 = «), we can substitute period 2’s indirect utility functions into the maximization
problem of period 1. Recall that the two indirect utility functions in period 2 for state H and

state L write:

Va(wdl o) = alog(wll) + alog(a) + (1 —a)log(l — «)
Va(wk,a) = alog(wh)+ alog(a)+ (1 —a)log(l —a)

Substituting the constraints into the expression, the problem writes:
alog(hywi) + (1 —a)log(1 —hy) + B[f (V3" + (1= f(h1))Vy']

We differentiate with respect to hy

Q l—«o

8h1 = hl 1— hl

+ Vs -V =0
Rearranging this expression, we find:
ot by (=14 V5T = BV3") + Wi (= BV + B13") =0 (5)

For simplicity, let’s write:

H

VQH o V2L — a]og(wgl) — a10g<wL) = alog <w2L> — ok
Wy

By construction, K is strictly positive. We can compare the optimal labor supply across the

two periods, as shown in (3). The optimal labor supply in period 1, hj, solves

hi = a+ BaKhy — BaKh3
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which incorporates future gains in earning due to promotion. We can rewrite (5) as a polyno-
mial of hy and solve it:
a+ (BaK —1)hy — faKhi =0 (6)
A=pF2a’K?+1+ (4a —2)BaK

For1>a>0and 1> >0, A >0 and the system (6) has two solutions:

B — 1-BaK+4/B2a2K2+1+(4a—2)fa K
1 - —2BaK

(7)

h//* . 17504[(7\/ﬁ2a2K2+1+(4a72)/30¢K
1 - —2BaK

1 " "
hi* is the only positive root. Moreover, limg 4 hy* = 1, therefore h;* is the interior solution

to the maximization problem in period 1.

A.6.2 Comparative statics

Assuming > 0 and « > 0, we can rewrite h] to derive some comparative statics.

N S V/B202K2 +1+ (4o — 2)BaK
179 28aK 280K

A
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dhy 1 /
dl% —  2BaK? +4
- 253? (26202 K+(4a—2)Ba]—28aV/A

(2BaK)?

28aK+(4a—2) /A
AKVA 2Ba K>

K?B%20%+(2a—1)aK —A

o 28202 KA

_ —1-BaK(2a—-1)

- 28202 KA
dhi 1 1+BaK(2a-1)
dK —  2BaK? 28202 KA

VA-1-BaK (2a—1)
28202 KA

Given that

26202 KvVA > 0
for 5 >0 and a > 0, then

dh’
dK

>0& g(K)=VA—1-BaK(2a—1)>0

which is true for K >0, >0 and a > 0.

As Ay, is the exponential transformation of K, we can write:

dh’t
Ay,

>0

The problem is symmetric for Gfi—]?.
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